Recap of last time. Last time we began discussing blow-ups:

Given \(p \in S \), there is a surface \(S' = Bl_p S \) and a morphism \(\pi : S' \to S \), unique up to isomorphism, such that (i) the restriction of \(\pi \) to \(\pi^{-1}(S - \{p\}) \) is an isomorphism onto \(S - \{p\} \), and (ii) \(\pi^{-1}(p) \) is isomorphic to \(\mathbb{P}^1 \). \(\pi^{-1}(p) \) is called the exceptional divisor \(p \), and is called the exceptional divisor.

A key example, and indeed the analytic-, formal-, or etale-local situation, was given by blowing up \(S = \mathbb{A}^2 \) at the origin, which I’ll describe again soon when it comes up in a proof.

For the definition, complex analytically, you can take the same construction. Then you need to think a little bit about uniqueness. There is a more intrinsic definition that works algebraically, let \(\mathcal{I} \) be the ideal sheaf of the point. Then \(S' = \text{Proj} \bigoplus_{d \geq 0} \mathcal{I}^d \).

1. How basic aspects of surfaces change under blow-up

Definition. If \(C \) is a curve on \(S \), define the strict transform \(C^{\text{strict}} \) of \(C \) to the the closure of the pullback on \(S - p \), i.e. \(\pi|_{S' - E}^{-1}(C \cap S - p) \). The proper transform \(C^{\text{proper}} \) is given by the pullback of the defining equation, so for example \(\pi^* \mathcal{O}_S(C) = \mathcal{O}_{S'}(C') \).

Lemma. If \(C \) has multiplicity \(m \) at \(p \), then \(C^{\text{proper}} = C^{\text{strict}} + mE \), i.e. \(\pi^* C \cong C^{\text{strict}} + mE \).

Proof. The multiplicity of \(C \) being \(m \) means that in local coordinates, the defining equation has terms of degree \(m \), but not lower. (Better: the defining equation lies in \(m^m \) but not \(m^{m+1} \).) Analytically, this means that the leading term in \(x \) and \(y \) has degree \(m \).
We do this by local calculation which will be useful in general. (Draw picture.) $U_0 = \{ ((x_0, y_0), [1; v]) : y_0 = x_0 v \} = \text{Spec } k[x_0, y_0, v]/y_0 = x_0 v = \text{Spec } k[x_0, v]$. The exceptional divisor E is given by $y_0 = 0$ (after morphism).

$$U_1 = \{ ((x_1, y_1), [u; 1]) : x_1 = y_1 u \} = \text{Spec } k[x_1, y_1, u]/x_1 = y_1 u = \text{Spec } k[y_1, u].$$ The exceptional divisor E is given by $y_1 = 0$.

Map down to $(x, y) = \text{Spec } k[x, y]. (x_0, y_0, v) \mapsto (x_0, y_0), (x_1, y_1, v) \mapsto (x_1, y_1).

Given a function $f(x, y) = 0$. Pull it back to U_0: $f(x, y) = f_m(x, y) + \text{higher} = f_m(x_0, x_0 v) + \text{higher} + \cdots$. \square

Exercise. To see if you understood that, do the same calculation on patch 2.

Theorem. Suppose $\pi : S' \to S$ is a blow up of S at p, with exceptional curve $E \subset S'$. Let D and D' be divisors on S. Then $\pi^* D \cdot \pi^* D' = D \cdot D' , E \cdot \pi^* D = 0, E^2 = -1$.

Remark. A curve on a smooth surface that is isomorphic to \mathbb{P}^1 and has self-intersection -1 is called a (-1)-curve.

Proof. The first we did yesterday. The second: by Serre’s moving lemma, we can move D away from p, then pull back. For the third: choose a curve C passing through p with multiplicity 1. (How to do this: hyperplane section of S.) Then $C_{\text{strict}} \cdot E = 1$. Also $C_{\text{proper}} \cdot E = 0$. as $C_{\text{strict}} + E = C_{\text{proper}}$, we’re done.

Theorem. (a) There is an isomorphism $\text{Pic } S \oplus \mathbb{Z} \cong \text{Pic } S'$ defined by $(D, n) \mapsto nE + \pi^* D$. (b) The same with Pic replaced by NS.

Proof. The arguments are the same for both parts, so I’ll do (a). It is surjective: the divisors upstairs are either E or strict transforms (which are proper transforms plus E’s). It is injective: if $\pi^* D + nE = 0$, then intersect with E to see that $n = 0$; then apply π_* to see that $D = 0$.

Theorem. $K_{S'} = \pi^* K_S + E$.

Proof. Clearly $K_{S'} = \pi^* K_S + mE$ for some m. By the adjunction formula for E, $K_E = K_{S'}(E)|_E$. Taking degrees:

$$-2 = (\pi^* K_S + mE + E) \cdot E = -m - 1.$$

\square

Exercise/Remark. If you want practice with the canonical bundle in local coordinates, take a meromorphic section of K_S that has neither zero nor pole at p (possible by Serre’s moving lemma), write it as $f(x, y)dx \wedge dy$, and pull it back to the open set U_1 to see that you get $f(x_0, x_0 v)dx_0 \wedge dv = f(x_0, x_0 v)x_0 dx_0 \wedge dv$.
2. RATIONAL MAPS OF SURFACES, LINEAR SYSTEMS, AND ELIMINATION OF INDETERMINACY

A rational map \(S \to X \), where \(X \) is a variety, means a morphism from an dense open set of \(S \). Recall that a rational map from a curve \(C \) to a projective variety can always be extended to a morphism. Similarly, a rational map from a surface \(S \) to a projective variety can be extended over most points; the set of indeterminacy is a finite set of points. More precisely, given a map \(\pi : S \to \mathbb{P}^n \). This is given by \(n + 1 \) sections of some line bundle. It makes sense except where the sections are all zero. This will be in codimension 2.

Let \(F \) be this finite set. We’ll denote \(\overline{\pi(S - F)} \) the image of \(S \), and denote it \(\pi(S) \). (I’m not sure we need to take the closure.) If \(C \) is a curve on \(S \), then we’ll denote \(\overline{\pi(C - F)} \) the image of \(C \), and denote it \(\pi(C) \). Here we definitely need to take the closure.

Now suppose you have a divisor \(D \) on \(S \). Given a subspace \(V \) of dimension \(n \) of \(H^0(S, \mathcal{O}(D)) \), we might hope to get a map to projective space \(\mathbb{P}^V \). (This is called a linear system of dimension \(n \); I should have introduced this notation earlier.) If it is base point free, we do.

If it has base points, the locus could have components of dimension 1. Such a component is called a fixed component of the linear system \(V \). The fixed part of \(V \) is the biggest divisor contained in every element of \(V \). So if this fixed part is \(F \), then \(D - F \) has no fixed components.

(I’m not happy with how I explained the previous paragraphs in class. I hope this is clearer.)

Lemma. If the linear systems has no fixed part, then it has only a finite number of fixed points.

Proof. Take two general sections, and look at their two zero-sets. Where do they intersect? At a bunch of points. Hence we get at most \(D^2 ? \)

We’ve basically shown that there is a bijection between:

(i) \{ rational maps \(\pi : S \to \mathbb{P}^n \) such that \(\pi(S) \) is contained in no hyperplane \}

(ii) \{ linear systems on \(S \) without fixed part and of dimension \(n \) \}

(Explain the correspondence.)

Theorem (Elimination of indeterminacy). Let \(\pi : S \to X \) be a rational map from a surface to a projective variety. Then there exists a surface \(S' \), a morphism \(\eta : S' \to S \) which is the composite of a finite number of blow-ups, and a morphism \(f : S' \to X \) such
that the diagram

\[
\begin{array}{c}
S' \\
\downarrow \eta \\
S \\
\downarrow \pi \\
X
\end{array}
\]

is commutative.

Proof. Idea: blow up fixed points, show that \(D^2 \) decreases.

We immediately reduce to the case where \(X \) is \(\mathbb{P}^m \), and \(\pi(S) \) isn’t contained in any hyperplane of \(\mathbb{P}^m \). Then \(\phi \) corresponds to a linear system \(V \subset |D| \) of dimension \(n \) on \(\tilde{S} \), with no fixed component. If \(V \) has no base point, then we’re done.

Otherwise, we blow up a base point \(x \), and consider \(S_1 \to S \) at \(x \) (and hence a rational map \(S_1 \to S \)). The exceptional curve is now in the fixed part of the linear system, with some multiplicity \(k \geq 1 \). So we subtract \(kE \) to get rid of the fixed part, i.e. get a new linear system \(V_1 \subset |\pi^*D - kE| \), to get the same rational map \(\phi_1 : S_1 \to S \), given by \(D_1 = D - kE \). If this is a morphism, we win, otherwise we keep going.

At some point, this process must stop (and hence we win in the long run). We prove this is the case when \(D^2 = i \), by induction on \(i \). Base case, \(i = 0 \): the number of fixed points is bounded by \(D^2 = 0 \), so there aren’t any. Inductive step: Now \(i > 0 \). Then we blow-up once, and we get a new surface with divisor class. On this surface, \(D^2_1 = (D - kE)(D - kE) = D^2 - k^2 < D^2 \). So by the inductive hypothesis, the process will terminate on this new surface, completing the induction.

3. The Universal Property of Blowing Up

Theorem (Universal property of blowing up). Let \(f : X \to S \) be a birational morphism of surfaces, and suppose that the rational map \(f^{-1} \) is undefined at a point \(p \) of \(S \). Then \(f \) factorizes as

\[
f : X \to \tilde{S} := \text{Bl}_p S \to S
\]

where \(g \) is a birational morphism and \(\pi \) is the blow-up at \(p \).

Proof: next day.

3.1. Applications of the universal property of blowing up. Two theorems.

Theorem (all birational morphisms factor into blow-ups). Let \(f : S \to S_0 \) be a birational morphism of surfaces. Then there is a sequence of blow-ups \(\pi_k : S_k \to S_{k-1} \) \((k = 1, \ldots, n)\) and an isomorphism \(u : S \to S_n \) such that \(f = \pi_1 \circ \cdots \circ \pi_n \circ u \).

Proof. If \(f \) is an isomorphism, we’re done. Otherwise, there is a point \(p \) of \(S_0 \) such that \(f^{-1} \) is undefined at \(p \), and we can factor through \(S \to S_1 = \text{Bl}_p S_0 \). We can repeat this.

If \(n(f_k) \) is the number of contracted curves of \(n(f_k) < n(f_{k+1}) \): if \(E \) is the exceptional divisor of \(\pi_k : S_k \to S_{k-1} \), then the preimage of \(E \) in \(S \) contains a curve which is contracted
by f_{k-1} but not f_k. As the number of contracted curves can’t be negative, the process must terminate.

Theorem (all birational maps can be factored into blow-ups). Let $\phi : S \to S'$ be a birational map of surfaces. Then there is a surface S'' and a commutative diagram

$$
\begin{array}{ccc}
S'' & \xrightarrow{g} & S' \\
\downarrow f & & \downarrow \phi \\
S & \xrightarrow{\phi} & S'
\end{array}
$$

where the morphisms f and g are composites of blow-ups.

Proof. By the theorem of elimination of indeterminacy, we can find such a diagram such that f is a composition of blow-ups. By the Theorem above, g must then be a composition of blow-ups too.

We’ve now proved some powerful stuff, so let’s take a step back and see what we now know, and how it relates to classification.

Two surfaces are birational iff they can be be related by sequences of blow-ups. We’ll be interested in birational classification, but biregular classification is very close.

If $f : S \to S'$ is birational which is the composition of n blow-ups, then $NS(S) \cong NS(S') \oplus \mathbb{Z}^n$, so n is independent of the choice of blow-ups. **Exercise:** Use this to show that every birational morphism from S to itself is an isomorphism.

Fact. In a blow-up, H^i of the structure sheaf is preserved, i.e. if $\pi : S' \to S$ is a blow-up, then $\pi^* : H^i(\mathcal{O}_S) \to H^i(\mathcal{O}_{S'})$ is an isomorphism.

The algebraic way of proving this fact comes from the Leray spectral sequence, and the fact that $\pi_* \mathcal{O}_{S'} = \mathcal{O}_S$ and $R^i \pi_* \mathcal{O}_{S'} = 0$ for $i > 0$. This in turn requires some infinitesimal analysis, in the form of “formal function theorems”. I suspect that there should be a relatively straightforward analytic proof.

In particular, by these numbers are birational invariants.

So look at what this means for the Hodge diamond. When you blow up, you add 1 to the central entry (the rank of the Neron-Severi group). Everything else is constant.

Next day: More consequences of these powerful theorems. Proof of the universal property of blowing up. Castelnuovo’s criterion for blowing down curves.