MODERN ALGEBRA (MATH 210) PROBLEM SET 7

1. Prove that \(\mathbb{Q}(\pi) \cong \mathbb{Q}(x) \). You may use the fact that \(\pi \) is transcendental.

2. Suppose \(q \) is a prime power. Show that there are \((q^3 - q)/3\) irreducible monic degree 3 polynomials in \(\mathbb{F}_q[x] \). (Hint: Consider the elements of \(\mathbb{F}_q^*, \) and their minimal polynomials over \(q \).) How many irreducible monic degree 12 polynomials are there in \(\mathbb{F}_q[x] \)?

3. Let \(E \) be the field \(k(x) \). Consider the six automorphisms of \(E \) given by mapping \(f(x) \) to \(f(x), f(1-x), f(1/x), f(1-1/x), f((1/1-x)), f(x/(x-1)) \) respectively. Show that these automorphisms form a group. Let \(F \) be the fixed point field. Show that \(I = (x^2 - x + 1)^3/x^3(x-1)^2 \in F \). Show that \(F = k(I) \) and \([E : F] = 6 \). (Hint: Find a sixth degree equation with coefficients in \(k(I) \) satisfied by \(x \). Use a useful theorem from class.) Hence \(k(x)/k(I) \) is a Galois extension. What is its Galois group?

4. Suppose \(p_1, \ldots, p_n \) are distinct prime numbers, and let \(F = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n}) \). Find the degree of the extension \(F/\mathbb{Q} \). Show that \(F/\mathbb{Q} \) is Galois, and find its Galois group.

5. Suppose \(e_1, \ldots, e_n \) are the elementary symmetric functions in the \(n \) variables \(x_1, \ldots, x_n \) over some field \(k \), i.e. \(e_1 = x_1 + \cdots + x_n, e_2 = x_1x_2 + x_1x_3 + \cdots + x_{n-1}x_n, \ldots, e_n = x_1x_2 \cdots x_n \). Let \(p_i = x_i^a + \cdots + x_i^n \) (\(a \) a positive integer). By the theorem of symmetric functions, \(p_i \) is a polynomial in the \(e_j \). Show this explicitly as follows. We have seen that the polynomial \(f(T) \in (k(x_1, \ldots, x_n))[T] \)

\[
f(T) = T^n - e_1 T^{n-1} + e_2 T^{n-2} - \cdots + (-1)^{n-1} e_{n-1} T + (-1)^n e_n
\]

has roots \(x_1, \ldots, x_n \). Rewrite \(x_j^a f(x_1) + \cdots + x_j^a f(x_n) = 0 \) in terms of \(p_i, \ldots, p_{a+n} \) (\(a \) a positive integer), and show that if \(p_i \) is a polynomial in the \(e_j \) for \(i < a + n \), then \(p_{a+n} \) is too. Deal also with the cases where \(1 \leq i \leq n \).

6. Suppose \(E/F \) is a Galois extension of degree \(n \) with Galois group \(\{\sigma_1, \ldots, \sigma_n\} \), and \(a_1, \ldots, a_n \) is a basis for \(E \) over \(F \). Show that

\[
\det \begin{pmatrix}
\sigma_1(a_1) & \sigma_1(a_2) & \cdots & \sigma_1(a_n) \\
\sigma_2(a_1) & \sigma_2(a_2) & \cdots & \sigma_2(a_n) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_n(a_1) & \sigma_n(a_2) & \cdots & \sigma_n(a_n)
\end{pmatrix}^2
\]

is a non-zero element of \(F \). (Hint: Show that it is non-zero separately. Recall the proof that if \(\{\sigma_1, \ldots, \sigma_n\} \) is a group of automorphisms of a field \(E' \), and \(F' \) is the fixed field, then \([E' : F'] = n \). The proof used the fact that there could be no nontrivial solution to a certain linear equation.)

The set is due Tuesday, December 3 at 3:30 pm in Pierre Albin’s mailbox.

Date: Tuesday, November 26, 2002.

1