MODERN ALGEBRA (MATH 210) PROBLEM SET 2

From the text: 2.69, 2.76, 2.98, 2.103. (For the last, and for future reference, read and understand the proof of Burnside’s Lemma, Theorem 2.113. Caution: the answer given in 2.103(ii) is incorrect!)

A1. This exercise shows that for \(n \neq 6 \), every automorphism of \(S_n \) is inner. Fix an integer \(n \geq 2 \) with \(n \neq 6 \).

(a) Prove that the automorphism group of a group \(G \) permutes the conjugacy classes of \(G \), i.e. for each \(\sigma \in \text{Aut}(G) \) and each conjugacy class \(\mathcal{K} \) of \(G \) the set \(\sigma(\mathcal{K}) \) is also a conjugacy class of \(G \).

(b) Let \(\mathcal{K} \) be the conjugacy class of transpositions in \(S_n \) and let \(\mathcal{K}' \) be the conjugacy class of any element of order 2 in \(S_n \) that is not a transposition. Prove that \(|\mathcal{K}| \neq |\mathcal{K}'| \). Deduce that any automorphism of \(S_n \) sends transpositions to transpositions.

(c) Prove that for each \(\sigma \in \text{Aut}(S_n) \)

\[\sigma : (12) \mapsto (ab_2), \quad \sigma : (13) \mapsto (ab_3), \ldots, \sigma : (1n) \mapsto (ab_n) \]

for some distinct integers \(a, b_2, b_3, \ldots, b_n \in \{1, 2, \ldots, n\} \).

(d) Show that \((12), (13), \ldots, (1n)\) generate \(S_n \) and deduce that any automorphism of \(S_n \) is uniquely determined by its action on these elements. Use (c) to show that \(S_n \) has at most \(n! \) automorphisms and conclude that \(\text{Aut}(S_n) = \text{Inn}(S_n) \) for \(n \neq 6 \).

A2. We now show that \(\text{Inn}(S_6) \) is of index at most 2 in \(\text{Aut}(S_6) \). Let \(\mathcal{K} \) be the conjugacy class of transpositions in \(S_6 \) and let \(\mathcal{K}' \) be the conjugacy class of any element of order 2 in \(S_6 \) that is not a transposition. Prove that \(|\mathcal{K}| \neq |\mathcal{K}'| \) unless \(\mathcal{K}' \) is the conjugacy class of products of three disjoint transpositions. Deduce that \(\text{Aut}(S_6) \) has a subgroup of index at most 2 which sends transpositions to transpositions. Then prove that \(|\text{Aut}(S_6) : \text{Inn}(S_6)| \leq 2 \).

A3. Finally, we exhibit an outer automorphism of \(S_6 \). (There are other, more beautiful, descriptions.) Let \(t_1 = (12)(34)(56), t_2 = (14)(25)(36), t_3 = (13)(24)(56), t_4 = (12)(36)(45), t_5 = (14)(23)(56) \).

Show that \(t_1, \ldots, t_5 \) satisfy the following relations:

\[(t_i^2) = e \text{ for all } i; \]
\[(t_i^2 t_j^2) = e \text{ for all } i \text{ and } j \text{ with } |i - j| \geq 2; \]
\[(t_i^3 t_j^3) = e \text{ for all } i \text{ and } j \text{ with } |i - j| = 1. \]

Use this to show that the map \((i(i+1)) \mapsto t_i^i \) gives an automorphism of \(S_6 \). (In the process, you will likely have to show that the relations above define \(S_6 \). Your argument will also presumably prove the obvious generalization to \(S_n \).)

Date: Tuesday, October 15, 2002.
B1. If there exists a chain of subgroups \(G_1 \leq G_2 \leq \cdots \leq G \) such that \(G = \bigcup_{i=1}^{\infty} G_i \) and each \(G_i \) is simple, then \(G \) is simple. (Note that \(G \) need not be finite!)

B2. (a) Let \(\Omega \) be an infinite set. Let \(D \) the subgroup of \(S_\Omega \) consisting of permutations which move only a finite number of elements of \(\Omega \) and let \(A \) be the set of all elements \(\sigma \in D \) such that \(\sigma \) acts as an even permutation on the (finite) set of points it moves. Prove that \(A \) is an infinite simple group.

(b) Prove that if \(H \neq \{e\} \) is a normal subgroup of \(S_\Omega \), then \(H \) contains \(A \), i.e. \(A \) is the unique nontrivial minimal normal subgroup of \(S_\Omega \).

C. For any finite group \(P \), let \(d(P) \) be the minimum number of generators of \(P \) (so, for example, \(d(P) = 1 \) iff \(P \) is a nontrivial cyclic group). Let \(m(P) \) be the maximum of the integers \(d(A) \) as \(A \) runs over all abelian subgroups of \(P \). Define

\[
J(P) = \langle A : \text{\(A \) is an abelian subgroup of \(P \) with \(d(A) = m(P) \)} \rangle.
\]

(\(J(P) \) is called the Thompson subgroup of \(P \). It plays a pivotal role in the study of finite groups, and in particular the classification of finite simple groups.)

(a) Prove that \(J(P) \) is preserved by all automorphisms of \(P \). (This is the definition of a characteristic subgroup.) Hence show that \(J(P) \) is normal.

(b) For both \(P = Q_8 \) and \(D_8 \), list all abelian subgroups \(A \) of \(P \) that satisfy \(d(A) = m(P) \). In both cases show that \(J(P) = P \).

(c) Prove that if \(Q \leq P \) and \(J(P) \) is a subgroup of \(Q \), then \(J(P) = J(Q) \). Deduce that if \(P \) is a subgroup (not necessarily normal) of the finite group \(G \) and \(J(P) \) is contained in some subgroup \(Q \) of \(P \) such that \(Q \) is normal in \(G \), then \(J(P) \) is normal in \(G \) as well.

Problems A1–C are from Dummit and Foote.

The set is due Tuesday, October 22 at 3:30 pm in Pierre Albin’s mailbox (opposite the elevator on the first floor of Building 380).