1. Show that a ring in which all ideals are finitely generated cannot have an infinite sequence of ideals

\[I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots \]

Conversely, show that if a ring has no infinite sequence of ideals, then all ideals are finitely generated.

Solution. Suppose all ideals of a ring \(R \) are finitely generated, and we have an increasing sequence of ideals, \(I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots \). The union

\[I = \bigcup_{i \geq 1} I_i \]

is also an ideal. (Not true for any union of ideals. The sequence being increasing is important.) By assumption, \(I = (a_1, \ldots, a_n) \) is finitely generated. Since the sequence \(\{I_k\}_{k \geq 1} \) is increasing, all \(a_i \) are contained in \(I_N \) whenever \(N \) is big enough, which implies

\[I = (a_1, \ldots, a_n) \subseteq I_N \subseteq I \Rightarrow I_N = I \] for all sufficiently large \(N \). Hence, the increasing sequence of ideals stabilizes after a finite number of steps.

Conversely, suppose \(R \) satisfies the ascending chain condition on its ideals, and let \(I \) be an ideal of \(R \). Choose a sequence of ideals inductively as follows: Pick some \(a_1 \in I \) and let \(I_1 = (a_1) \). Suppose \(I_n = (a_1, \ldots, a_n) \subseteq I \) has been chosen. If \(I_n \not\subseteq I \), pick some \(a_{n+1} \in I - I_n \), and let \(I_{n+1} = I_n + (a_{n+1}) \subseteq I \). Note that \(I_n \not\subseteq I_{n+1} \). By assumption, this procedure must terminate after a finite number of steps, which happens only when \(I = I_n = (a_1, \ldots, a_n) \). Hence any ideal is finitely generated.

(You can’t start with: let \((a_1, a_2, \ldots, a_n) \) be a generating set. Do you see why? How do you know there is a countable generating set? Another common mistake is talk about “the” generating set.)

2.

(a) Show that if \(n \neq 4 \), the only normal subgroups of \(S_n \) are \(\{e\} \), \(A_n \), and \(S_n \).

(b) Describe all group homomorphisms from \(S_7 \to S_5 \).

Solution. (a) The cases \(n = 2, 3 \) are easily checked. Consider \(n \geq 5 \). Let \(N \) be a normal subgroup of \(S_n \). Then \(N \cap A_n \) is a normal subgroup of \(A_n \). Since \(A_n \) is simple, \(N \cap A_n \) must equal \(\{e\} \) or \(A_n \). In the latter case, \(N \supseteq A_n \). As \(|S_n : A_n| = 2 \), the only subgroups of \(S_n \) containing \(A_n \) are \(A_n \) and \(S_n \), and both of them are normal.
Suppose \(N \cap A_n = \{e\} \). Assume \(N \neq \{e\} \) and let \(\sigma, \tau \in N \setminus \{e\} \). Since \(\sigma, \tau \notin A_n \), they are odd permutations. Since the product of two odd permutations is even, \(A_n \) consists of all even permutations and \(N \cap A_n = \{e\} \), we have \(\sigma^2 = e = \sigma \tau \), which implies \(\sigma = \tau \). Hence \(N \) contains at most one nontrivial element. [This is a proof of problem 2.95(i) in Rotman.] However, since \(N \) is normal, whenever \(N \) contains an element, \(N \) contains all its conjugates, and the conjugacy class of any nontrivial element of \(S_n \) consists of more than one elements (true for any \(n > 2 \)). Thus \(N \) cannot contain exactly one nontrivial element. We conclude \(N = \{e\} \).

(b) Let \(\varphi : S_7 \to S_5 \) be a homomorphism. By (a), \(\ker \varphi = \{e\}, A_7 \) or \(S_7 \). The first case is impossible since \(|S_7| > |S_5| \). If \(\ker \varphi = A_7 \), we must have \(\text{im} \varphi = \{e, \tau\} \), where \(\tau \in S_5 \) is of order 2. Conversely, for any such \(\tau \), since \(S_7/A_7 \cong \{e, \tau\} \), there exists a homomorphism with \(A_7 \) as the kernel and \(\{e, \tau\} \) as the image. Finally, we have \(\ker \varphi = S_7 \) if and only if \(\varphi \) maps all elements of \(S_7 \) to \(e \in S_5 \).

3. Prove that every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.

Solution. Let \((p) \neq (0)\) be prime and \((a) \supseteq (p)\). Since \(p \in (a) \), we have \(p = ab \) for some \(b \in R \). Then \(ab \in (p) \) but \(a \notin (p) \) implies \(b \in (p) \), or \(b = cp \) for some \(c \in R \). Hence we have \(p = ab = acp \Rightarrow 1 = ac \), since \(R \) is a domain and \(p \neq 0 \). Therefore, \(a \) is a unit and \((a)\) is the whole ring. This proves \((p)\) is maximal.

(Many people never explicitly used the fact that \((p) \neq (0)\). It is necessary — do you see where?)

4.

(a) Note that \(\omega = \frac{-1 + \sqrt{-3}}{2} \) is a cube root of 1, and \(\omega^2 + \omega + 1 = 0 \). Prove that the subset \(\{x + y\omega \in \mathbb{Z}[\omega] : x + y \text{ is divisible by } 3\} \subset \mathbb{Z}[\omega] \) is an ideal. Is it prime?

(b) Describe the set of integers of the form \(a^2 - ab + b^2 \) (\(a, b \) integers).

Solution. (a) Let \(I \) be the subset defined in the question. It is straightforward to directly check that \(I \) is an ideal. Instead, observe that the following are equivalent:

\[
\begin{align*}
(1) \ 3|a + b, & \quad (ii) \ 3|N(a + b\omega), \quad (iii) \ a + b\omega \in (1 - \omega),
\end{align*}
\]

(i) \(\iff \) (ii): since \(N(a + b\omega) = a^2 - ab + b^2 = (a + b)^2 - 3ab \). (iii) \(\Rightarrow \) (ii): since \(N(1 - \omega) = 3 \). (ii) \(\Rightarrow \) (iii): since \(a + b\omega = a + b - b(1 - \omega) = (1 - \omega) \left[\frac{a + b}{3} (1 - \omega) - b \right] \). Hence by (iii), \(I = (1 - \omega) \) is an ideal. Also, (ii) implies \(I \) is prime: \(3|N(\alpha\beta) = N(\alpha)N(\beta) \Rightarrow 3|N(\alpha) \text{ or } 3|N(\beta) \).

(b) We first determine when a prime integer \(p \) can be so expressed. If \(p = a^2 - ab + b^2 \), by reducing to mod 3, it is easy to see that we must have \(p \equiv 0, 1 \text{ (mod 3)} \). Conversely, if \(p = 3 \), take \(a = 1, b = -1 \). If \(3|p - 1 \), by Theorem 2.78 in Rotman, there exists \(\tau \in \mathbb{F}_p^* \) of order 3. Hence we have \((\tau - 1)(\tau^2 + \tau + 1) = \tau^3 - 1 = 0 \text{ but } \tau - 1 \neq 0, \tau^2 + \tau + 1 = 0 \). This means there exist \(t \in \mathbb{Z} \) such that \(t^2 + t + 1 = pk \) for some \(k \in \mathbb{Z} \).
In particular, we may require $1 < t \leq p - 1$, so that
\[
0 < pk = t^2 + t + 1 = \left(t + \frac{1}{2} \right)^2 + \frac{3}{4} \leq \left(p - \frac{1}{2} \right)^2 + \frac{3}{4} = p^2 - p + 1 < p^2,
\]
and therefore $0 < k < p$. In $\mathbb{Z}[\omega]$, we have
\[
p | pk = t^2 + t + 1 = (t - \omega)(t - \overline{\omega}).
\]
Since $\mathbb{Z}[\omega]$ is a UFD, some (nonunit) irreducible factor α of p must divide, say, $t - \omega$. Then, $N(\alpha)$ divides both $N(p) = p^2$ and $N(t - \omega) = pk$. Since $0 < k < p$ and $N(\alpha) \neq 1$, we conclude $N(\alpha) = p$. Let $\alpha = a + b\omega$. We then have $p = a^2 - ab + b^2$. Therefore, p can be expressed in the desired form if and only if $p \equiv 0, 1 \pmod{3}$.

Alternatively, here is a little more concise proof, paralleling our proof of which numbers are expressible as the sum of two squares: If $p \neq 3$,
\[
p = a^2 - ab + b^2 = (a + b\omega)(a + b\overline{\omega})
\]
\[
\Leftrightarrow (p) \subset \mathbb{Z}[\omega] \text{ is not prime}
\]
\[
\Leftrightarrow \mathbb{Z}[\omega]/(p) \cong \mathbb{Z}[x]/(x^2 + x + 1, p) \cong \mathbb{F}_p[x]/(x^2 + x + 1) \text{ has zero divisors}
\]
\[
\Leftrightarrow x^2 + x + 1 \text{ is reducible over } \mathbb{F}_p
\]
\[
\Leftrightarrow \tau^3 = 1 \text{ for some } \tau \in \mathbb{F}_p^\times - \{1\} \text{ (since } p \neq 3)
\]
\[
\Leftrightarrow 3 \mid p - 1 \text{ (since } \mathbb{F}_p^\times \text{ is cyclic of order } p - 1)
\]

Let $S = \{q \text{ a prime integer : } q \equiv 2 \pmod{3}\}$. Suppose $n = a^2 - ab + b^2 = (a + b\omega)(a + b\overline{\omega})$ and $q \in S$ divides n. Since q stays irreducible in $\mathbb{Z}[\omega]$, we must have, say, $q|a + b\omega$, which implies $q^2 = N(q)|N(a + b\omega) = n$. Then, if we let $n = q^2n', a + b\omega = q(a' + b\omega)$, we have $n' = (a' + b\omega)(a' + b\overline{\omega})$. By the above argument, if $q|n'$, then $q^2|n'$. Therefore, every $q \in S$ divides n exactly an even number of times. Conversely, suppose
\[
n = \prod_{p_i \notin S} p_i^{k_i} \prod_{q_j \in S} q_j^{2\ell_j}
\]
is the prime factorization in \mathbb{Z}. Since for any $p_i \notin S$, we have $p_i = N(\alpha_i)$ for some $\alpha_i \in \mathbb{Z}[\omega]$, we have
\[
n = \prod_i N(\alpha_i)^{k_i} \prod_j N(q_j)^{\ell_j} = N \left(\prod_i \alpha_i^{k_i} \prod_j q_j^{\ell_j} \right) = a^2 - ab + b^2
\]
for some $a, b \in \mathbb{Z}$.

5. Find (with proof) an ideal I of $\mathbb{Z}[i]$ whose quotient F is a field of 9 elements. Is there an ideal whose quotient is a field of 25 elements?

Solution. Since 3 is irreducible in $\mathbb{Z}[i]$ ($a^2 + b^2 = 3$ has no integer solution) and $\mathbb{Z}[i]$ is a UFD, $(3) \subset \mathbb{Z}[i]$ is a prime ideal, and thus a maximal ideal by problem 3. Hence, $F = \mathbb{Z}[i]/(3)$ is a field. It is easy to see that the nine elements $\{a + bi : 0 \leq a, b \leq 2\}$ of $\mathbb{Z}[i]$ map to distinct elements, and all the elements of F. Therefore, F is a field of nine elements. [Alternatively, $\mathbb{Z}[i]/(3) \cong \mathbb{Z}[x]/(3, x^2 + 1) \cong \mathbb{F}_3[x]/(x^2 + 1)$ is a degree 2 field extension over \mathbb{F}_3, since $x^2 + 1$ is irreducible over \mathbb{F}_3, and hence is a field of $3^2 = 9$ elements.]
A common mistake was to miscount the number of elements of \(\mathbb{Z}[i]/(2) \), by abusing the division algorithm; there are 4, not 9!.

For the second part, here are two solutions.

First solution. Suppose \(I \) is an ideal such that \(R = \mathbb{Z}[i]/I \) is a field of 25 elements. Then every element of \(R \) has order dividing 25, so in particular \(25 \in I \). As \(I \) is prime, \(5 \in I \). However, \(\mathbb{Z}/(5) \) has 25 elements (by the same method as above), so \(I = (5) \). But then \((5) \) isn’t prime: \(5 = (2 + i)(2 - i) \).

Second solution, using what we know now. Suppose we have a ring homomorphism \(\varphi : \mathbb{Z}[i] \to \mathbb{F}_{25} \), where \(\mathbb{F}_{25} \) is the field of 25 elements. If \(\varphi \neq 0 \), \(\varphi(1) = 1 \) (since \(\varphi(1)^2 = \varphi(1) \)), and thus
\[
0 = \varphi(i^2 + 1) = \varphi(i)^2 + 1 = (\varphi(i) - 2)(\varphi(i) - 3).
\]
The last equality holds since \(\text{char} = 5 \). Hence, \(\varphi(i) = 2 \) or 3, and for any \(a, b \in \mathbb{Z} \), \(\varphi(a + bi) = a + b\varphi(i) \in \{0, 1, 2, 3, 4\} = \mathbb{F}_5 \subset \mathbb{F}_{25} \). Therefore, there doesn’t exist any surjective homomorphism mapping \(\mathbb{Z}[i] \) onto a field of 25 elements. In other words, there doesn’t exist any ideal \(I \subset \mathbb{Z}[i] \) such that \(\mathbb{Z}[i]/I \cong \mathbb{F}_{25} \).

By a slight extension of these arguments, you can show that if there is an ideal whose quotient is a field of \(q \) elements, then \(q \) is prime not 3 modulo 4, or the square of a prime that is 3 modulo 4.

6. How many abelian groups are there of order 288?

Solution. \(288 = 32 \times 9 \). In the direct sum decomposition into primary factors of an abelian group of order 288, the orders of the 2-primary ones can be:
\[
\{2, 2, 2, 2\}, \{2, 2, 4\}, \{2, 2, 8\}, \{2, 4, 4\}, \{2, 16\}, \{4, 8\}, \{32\}.
\]
Those of the 3-primary ones can be:
\[
\{3, 3\}, \{9\}.
\]
Hence there are \(7 \times 2 = 14 \) nonisomorphic abelian groups of order 288.

(Here is is most useful to use the version of the Fundamental Theorem of Abelian groups that separates the group into \(p \)-parts.)