THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Important Theorem. If E/k is a finite extension, then the following statements are equivalent.

(i) E is a splitting field of some separable polynomial $f(x) \in k[x]$.
(ii) $k = E^G$, where G is the group of automorphisms of E fixing k (i.e. E/k is Galois).
(iii) Every irreducible $p(x) \in k[x]$ having one root in E is separable and splits in $E[x]$.

Fundamental Theorem of Galois theory (Rotman p. 228). Let E/k be a finite Galois extension with Galois group $G = \text{Gal}(E/k)$.

(i) The function

\[\gamma : \text{intermediate fields of } E/k \rightarrow \text{subgroups of } \text{Gal}(E/k), \]

defined by $\gamma : F \mapsto \text{Gal}(E/F)$, is an order-reversing bijection with inverse

\[\delta : \text{subgroups of } \text{Gal}(E/k) \rightarrow \text{intermediate fields of } (E/k), \]

given by $\delta : H \mapsto E^H$.

(ii) For every intermediate field $E/B/k$, $E^{\text{Gal}(E/B)} = B$. For every subgroup $H \subset \text{Gal}(E/k)$, $\text{Gal}(E/E^H) = H$.

(iii) For any two subgroups $H, K \subset \text{Gal}(E/k)$,

\[E^{(H,K)} = E^H \cap E^K \]

(where $\langle H, K \rangle$ means the subgroup generated by H, K) and

\[E^{H \cap K} = \langle E^H, E^K \rangle \]

(where $\langle E^H, E^K \rangle$ means the subfield generated by E^H, E^K, called the compositum).

For any two intermediate fields B and C of E/k,

\[\text{Gal}(E/(B,C)) = \text{Gal}(E/B) \cap \text{Gal}(E/C) \quad \text{and} \quad \text{Gal}(E/(B \cap C)) = \langle \text{Gal}(E/B), \text{Gal}(E/C) \rangle. \]

(iv) For every intermediate field B between k and E, $[B : k] = [G : \text{Gal}(E/B)]$. (The left is the degree of a field extension, and the right is an index of a subgroup!) For every subgroup H of $\text{Gal}(E/k)$, $[G : H] = [E^H : k]$.

(v) If B is an intermediate field, then B/k is Galois iff $\text{Gal}(E/B)$ is a normal subgroup of $\text{Gal}(E/k)$. In this case, $\text{Gal}(B/k) = \text{Gal}(E/k)/\text{Gal}(E/B)$.

Date: Thursday, December 5, 2002.