Problem (11.2.3). Let V be the collection of polynomials with coefficients in F in the variable x of degree at most n. Determine the transition matrix from the basis $1, x, x^2, \ldots, x^n$ for V to the elements

$$1, x - \lambda, \ldots, (x - \lambda)^{n-1}, (x - \lambda)^n$$

where λ is a fixed element of F. Conclude that these elements are a basis for V.

Solution. Since $x = (x - \lambda) + \lambda$, by the binomial theorem, we have

$$x^k = ((x - \lambda) + \lambda)^k = \sum_{i=0}^{k} \binom{k}{i} \lambda^{k-i}(x - \lambda)^i.$$

Hence, the desired transition matrix is given by

$$
\begin{pmatrix}
1 & \lambda & \lambda^2 & \ldots & \lambda^n \\
0 & 1 & 2\lambda & \ldots & n\lambda^{n-1} \\
0 & 0 & 1 & \ldots & (n)\lambda^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{pmatrix}
$$

Since this matrix is invertible, $1, x - \lambda, \ldots, (x - \lambda)^n$ are also a basis for V.

Problem (11.2.4). Let φ be the linear transformation of \mathbb{R}^2 to itself given by rotation counterclockwise around the origin through an angle θ. Show that the matrix of φ with respect to the standard basis for \mathbb{R}^2 is

$$
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}.
$$

Solution. Let M be the matrix of φ with respect to the standard basis. Then the first column of M is $\varphi(1, 0)$, and the second column is $\varphi(0, 1)$. Since $\varphi(1, 0) = (\cos \theta, \sin \theta)$ and $\varphi(0, 1) = (-\sin \theta, \cos \theta)$, we have

$$M = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}.$$

Problem (11.2.5). Show that the $m \times n$ matrix A is nonsingular if and only if the linear transformation φ is a nonsingular linear transformation from the n-dimensional space V to the m-dimensional space W, where $A = M_{\mathcal{E}}^\mathcal{B}(\varphi)$, regardless of the choice of bases \mathcal{B} and \mathcal{E}.

Date: 31 January, 2011.
Solution. Suppose $A = M^B_\varphi$, where φ is a nonsingular linear transformation. Then φ has an inverse φ^{-1}, and $A^{-1} = M^B_{\varphi^{-1}}$, since the composite of the two transformations is the identity, and the matrix is taken to be from B to B or E to E (depending on the order of composition). Conversely, if A is nonsingular, then $A^{-1} = M^B_{\varphi^{-1}}$.

Problem (11.2.9). If W is a subspace of the vector space V stable under the linear transformation φ (i.e., $\varphi(W) \subseteq W$), show that φ induces linear transformations $\varphi|_W$ on W and $\overline{\varphi}$ on the quotient vector space V/W. If $\varphi|_W$ and $\overline{\varphi}$ are nonsingular prove φ is nonsingular. Prove the converse holds if V has finite dimension and give a counterexample with V infinite dimensional.

Solution. Let $w \in W$. Then, since W is stable under φ, $\varphi(w) \in W$, so $\varphi|_W$ induces a linear transformation on W. Now, suppose $v \in V$. We define $\overline{\varphi}(v+W) = \varphi(v) + W$. We must check that this is well-defined. Suppose $v' - v = w \in W$. Then

$$\overline{\varphi}(v') - \overline{\varphi}(v) = \varphi(v') + W - \varphi(v) + W = \varphi(v' - v) + W = \varphi(w) + W = W,$$

so $\overline{\varphi}$ is well-defined. (It is easily checked that φ is in fact a linear transformation.) Suppose that $\varphi|_W$ and $\overline{\varphi}$ are nonsingular. We'll check first that φ is surjective. Pick $v \in V$. Since $\overline{\varphi}$ is surjective, we can find some $v' \in V$ so that $\overline{\varphi}(v' + W) = v + W$; in other words, $\varphi(v) = v' + w$ for some $w \in W$. Since $\varphi|_W$ is surjective, we can find some $w' \in W$ so that $\varphi(w') = w$. Hence $\varphi(v' - w') = v$. Now, we check that φ is injective. Suppose $\varphi(v) = 0$. Hence $\overline{\varphi}(v + W) = W$, we must have $v \in W$. Since $\varphi|_W$ is injective, and we have $\varphi|_W(v) = 0$, we must have $v = 0$.

Now, we check the converse for a finite-dimensional space V. Suppose φ is nonsingular. Then φ is injective, so $\varphi|_W$ is also injective and hence nonsingular (since W is finite-dimensional). Now we show that $\overline{\varphi}$ is surjective. Pick $v' + W \in V/W$. Since φ is surjective, there is some $v \in V$ so that $\varphi(v) = v'$. Hence $\overline{\varphi}(v + W) = v' + W$, so $\overline{\varphi}$ is surjective. For a counterexample in the infinite-dimensional space, let V be a vector space with basis $\{e_i : i \in \mathbb{Z}\}$, and let φ be the transformation given by the right shift: $\varphi(e_i) = e_{i+1}$. Let W be the subspace of V generated by $\{e_i : i \geq 0\}$. Hence W is a φ-invariant subspace, but $\overline{\varphi}$ on V/W fails to be injective: since $\varphi(e_{-1}) = e_0$, $\overline{\varphi}(e_{-1} + W) = e_0 + W = W$. Furthermore, $\varphi|_W$ fails to be surjective, since $e_0 \not\in \text{image } \varphi|_W$.

Problem (11.2.10). Let V be an n-dimensional vector space and let φ be a linear transformation of V to itself. Suppose W is a subspace of V of dimension m that is stable under φ.

(a) Prove that there is a basis for V with respect to which the matrix for φ is of the form

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
where A is an $m \times m$ matrix, B is an $m \times (n - m)$ matrix and C is an $(n - m) \times (n - m)$ matrix (such a matrix is called block upper triangular).

(b) Prove that there is a subspace W' invariant under φ so that $V = W \oplus W'$ decomposes as a direct sum then the bases for W and W' give a basis for V with respect to which the matrix for φ is block diagonal:

$$
\begin{pmatrix}
A & 0 \\
0 & C
\end{pmatrix}
$$

where A is an $m \times m$ matrix and C is an $(n - m) \times (n - m)$ matrix.

(c) Prove conversely that if there is a basis for V with respect to which φ is block diagonal as in (b) then there are φ-invariant subspaces W and W' of dimensions m and $n - m$, respectively, with $V = W \oplus W'$.

Solution.

(a) Let $\{e_1, \ldots, e_m\}$ be a basis for W, and complete this to a basis $\{e_1, \ldots, e_n\}$ of V. Since W is stable under φ, $\varphi(e_i) \in W$ for $1 \leq i \leq m$, so the matrix of φ with respect to this basis is of the desired form.

(b) In this case, let $\{e_1, \ldots, e_m\}$ be a basis of W, and let $\{e_{m+1}, \ldots, e_n\}$ be a basis for W'. Then the matrix of φ with respect to the basis $\{e_1, \ldots, e_n\}$ is of the form $\begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$, where A is an $m \times m$ matrix and C is an $(n - m) \times (n - m)$ matrix.

(c) Suppose such a basis exists; call it $\{e_1, \ldots, e_n\}$. Then, let W be the span of e_1, \ldots, e_m, and let W' be the span of e_{m+1}, \ldots, e_n. Then W and W' are both φ-stable of the correct dimensions, and $V = W \oplus W'$.

Problem (11.2.11). Let φ be a linear transformation from the finite-dimensional vector space V to itself such that $\varphi^2 = \varphi$.

(a) Prove that image $\varphi \cap \ker \varphi = 0$.

(b) Prove that $V = \text{image} \varphi \oplus \ker \varphi$.

(c) Prove that there is a basis of V such that the matrix of φ with respect to this basis is a diagonal matrix whose entries are all 0 or 1.

Solution.

(a) Suppose $v \in V$ be such that $\varphi(v) \neq 0$. Then $\varphi^2(v) = \varphi(v) \neq 0$, so $\varphi(v) \notin \ker \varphi$. Hence image $\varphi \cap \ker \varphi = 0$.

(b) Let $v \in V$. We write $v = v' + v''$, where $v' \in \text{image} \varphi$ and $v'' \in \ker \varphi$. Let $v' = \varphi(v)$, and let $v'' = v - \varphi(v)$. Then clearly $v' \in \text{image} \varphi$, and

$$
\varphi(v'') = \varphi(v) - \varphi(\varphi(v)) = \varphi(v) - \varphi(v) = 0,
$$

so $v'' \in \ker \varphi$. By part (a), then, $V = \text{image} \varphi \oplus \ker \varphi$.

(c) Let $\{e_1, \ldots, e_m\}$ be a basis of image φ, and let $\{e_{m+1}, \ldots, e_n\}$ be a basis of $\ker \varphi$. Then the matrix of φ with respect to this basis is a diagonal matrix all of whose diagonal entries are 0 or 1.
Problem (11.2.37). Let V be the 7-dimensional vector space over the field F consisting of the polynomials in the variable x of degree at most 6. Let φ be the linear transformation of V to itself defined by $\varphi(f) = f'$, where f' denotes the usual derivative (with respect to x) of the polynomial $f \in V$. For each of the fields below, determine a basis for the image and for the kernel of φ:

(a) $F = \mathbb{R}$.
(b) $F = \mathbb{F}_2$, the finite field of 2 elements (note that, for example, $(x^2)' = 2x = 0$ over this field).
(c) $F = \mathbb{F}_3$.
(d) $F = \mathbb{F}_5$.

Solution. (a) The image consists of all polynomials of degree at most 5, so a basis for the image is $\{1, x, x^2, x^3, x^4, x^5\}$, and a basis for the kernel is $\{1\}$.

(b) When we differentiate a monomial x^n of even degree, we get 0, so the image consists of polynomials all of whose monomials have even degree (and degree less than 6). Hence, a basis for the image is $\{1, x^2, x^4\}$, and a basis for the kernel is $\{1, x^2, x^4, x^6\}$.

(c) This case is similar to the one above. Now a basis for the image is $\{1, x, x^3, x^4\}$, and a basis for the kernel is $\{1, x^3, x^6\}$.

(d) This time, a basis for the image is $\{1, x, x^2, x^3, x^5\}$, and a basis for the kernel is $\{1, x^5\}$.

Problem (11.3.1). Let V be a finite dimensional vector space. Prove that the map $\varphi \mapsto \varphi^*$ in Theorem 20 gives a ring isomorphism of $\text{End}(V)$ with $\text{End}(V^*)$.

Solution. This is false: the map is not a ring homomorphism in general (when $\dim V > 1$): we have

$$ (\varphi \psi)^*(f) = f \circ (\varphi \circ \psi) $$
$$ = (f \circ \varphi) \circ \psi $$
$$ = \psi^*(f \circ \varphi) $$
$$ = \psi^*(\varphi^* f) $$
$$ = \psi^* \varphi^*(f). $$

But, we can at least show that the map is a vector space isomorphism. In Theorem 20, we show that $\varphi \mapsto \varphi^*$ is a vector space homomorphism. We now show that the map is an isomorphism. Since V and V^* have the same dimension, $\text{End}(V)$ and $\text{End}(V^*)$ also have the same dimension. Hence, it suffices to show that $\varphi \mapsto \varphi^*$ is injective. Suppose that $\varphi \neq 0$. Then, there is some $v \in V$ so that $\varphi(v) \neq 0$. Hence, there is some $f \in V^*$ so that $f(\varphi(v)) \neq 0$. In particular, $f \circ \varphi$ is not the zero element of V^*, so $\varphi^*(f) \neq 0$. Hence $\varphi^* \neq 0$. Thus $\varphi \mapsto \varphi^*$ is injective and hence an isomorphism.

Problem (11.3.2). Let V be the collection of polynomials with coefficients in \mathbb{Q} in the variable x of degree at most 5 with $1, x, x^2, \ldots, x^5$ as basis. Prove that the following
are elements of the dual space of V and express them as linear combinations of the dual basis:

(a) $E : V \to \mathbb{Q}$ defined by $E(p(x)) = p(3)$ (i.e., evaluation at $x = 3$).

(b) $\varphi : V \to \mathbb{Q}$ defined by $\varphi(p(x)) = \int_0^1 p(t) \, dt$.

(c) $\varphi : V \to \mathbb{Q}$ defined by $\varphi(p(x)) = \int_0^1 t^2 p(t) \, dt$.

(d) $\varphi : V \to \mathbb{Q}$ defined by $\varphi(p(x)) = p'(5)$ where p' denotes the usual derivative of the polynomial $p(x)$ with respect to x.

Solution. Let $e_0 = 1, \ldots, e_5 = x^5$ be a basis of V, so the dual basis is e_0^*, \ldots, e_5^*.

(a) $(f + g)(3) = f(3) + g(3)$, so E is an element of V^*. To determine it in terms of the dual basis, note that $E(e_i) = 3^i$ for $0 \leq i \leq 5$, so $E = e_0^* + 3e_1^* + 9e_2^* + 27e_3^* + 81e_4^* + 243e_5^*$.

(b) Again, integration is linear, so φ is an element of V^*. Checking the image on the basis, we see that $\varphi = e_0^* + \frac{1}{2}e_1^* + \frac{1}{3}e_2^* + \frac{1}{4}e_3^* + \frac{1}{5}e_4^* + \frac{1}{6}e_5^*$.

(c) This time, we have $\varphi = \frac{1}{3}e_0^* + \frac{1}{4}e_1^* + \frac{1}{5}e_2^* + \frac{1}{6}e_3^* + \frac{1}{7}e_4^* + \frac{1}{8}e_5^*$.

(d) Differentiation is also linear, so $\varphi \in V^*$. We have $\varphi = 5e_1^* + 10e_2^* + 15e_3^* + 20e_4^* + 25e_5^*$.

Problem (1). Let A denote an $m \times n$ matrix over a field k. Prove that there are invertible matrices P and Q over k, with P (respectively Q) of size $m \times m$ (respectively $n \times n$), so that PAQ has the form

$$
\begin{bmatrix}
I_p & 0_{p \times (n-p)} \\
0_{(m-p) \times p} & 0_{(m-p) \times (n-p)}
\end{bmatrix}
$$

where p is a number which is less than or equal to both m and n, I_p denotes the $p \times p$ identity matrix, and $0_{a \times b}$ denotes the $a \times b$ zero matrix.

Solution. Given a matrix A, we can perform row and column operations to put it into the desired form. The matrices P and Q keep track of the row and column operations, respectively, that were performed.

Problem (2). Determine such matrices P and Q, as well as the integer p, for the matrix

$$
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
-3 & -2 & -1
\end{bmatrix}.
$$
Solution. We row-reduce the matrix first to get P, keeping track of the operations performed. For example, we may begin by subtracting twice the first row from the second and adding three times the first row to the third; this corresponds to left-multiplication by
\[
\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 0 & 1
\end{bmatrix}.
\]
When we finish row-reducing, we get
\[
P = \begin{bmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ -5 & 4 & 1 \end{bmatrix}, \quad PA = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.
\]
Now, we column-reduce to get Q. When we do this, we find that
\[
Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, \quad PAQ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]
Hence, $p = 2$.