Homework # 2.

Problem 1. Consider the Poisson equation in a bounded domain U:
\[-\Delta u = f(x) \text{ in } U, \]
with $f(x) \geq 0$. Use Problem 5 of Problem set 2 to show that $u(x)$ can not attain a minimum inside U.

Problem 2. Consider the Poisson equation in a bounded domain U:
\[-\Delta u = f(x) \text{ in } U. \]
However, instead of prescribing the value of u at the boundary we prescribe its normal derivative:
\[\frac{\partial u}{\partial n} = g \text{ on } \partial U. \]

(i) Show that if $u(x)$ solves the problem (2)-(3) then so does any function of the form $u(x) + C$, where C is an arbitrary constant.

(ii) Show that for (2)-(3) to have a solution we must have
\[\int_U f(x)dx = -\int_{\partial U} g(y)dS(y). \]

(iii) Fix $x \in U$ and let $h(x; y)$ be the solution of
\[-\Delta_y h(x, y) = 0 \text{ for } y \in U, \]
\[\frac{\partial h(x, y)}{\partial n_y} = \frac{\partial \Phi(x - y)}{\partial n_y} + \frac{1}{S}. \]

Here $\Phi(x)$ is the fundamental solution of the Laplace equation, and $S = |\partial U|$ is the area of the boundary ∂U. Show that constraint (4) is satisfied for (5), hence (5) may have a solution.

(iv) Let $h(x, y)$, with $x, y \in U$, be a solution of (5). Set
\[N(x, y) = \Phi(x - y) - h(x, y), \text{ for } x, y \in U. \]
Adapt our derivation for the problem when the boundary data for u (rather than for its normal derivative) is prescribed to show that the function
\[u(x) = \int_U N(x, y)f(y)dy + \int_{\partial U} N(x, y)g(y)dS(y) \]
gives a solution for (2)-(3).

Problem 3. Let a function u satisfy the following problem:
\[\Delta^2 u = 0 \text{ in } U, \]
\[\Delta u = g \text{ on } \partial U, \]
\[u = 0 \text{ on } \partial U. \]

Here Δ^2 is the bi-Laplacian, that is, $\Delta^2 u = \Delta(\Delta u)$. Here we prescribe the values of u and its Laplacian on the boundary – but the equation inside U is now of the fourth order.
(i) Compute the bi-Laplacian in two dimensions explicitly in terms of the fourth order derivatives of \(u \):

\[
\Delta^2 u = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)^2 u = ?
\]

(ii) Let \(u \) solve (6), and set \(h = \Delta u \). Show that \(h \) attains its minimum and maximum over \(U \) at the boundary.

(iii) Assume that \(g \geq 0 \). Show that \(u \) attains its maximum over \(U \) at the boundary. Is this true about the minimum as well?

(iv) Show that (6) has at most one solution.

Problem 4. Consider the integer lattice \(\mathbb{Z}^2 \) in two dimensions, and let \(X_n(x, y) \) be the standard random walk starting at a point \((x, y) \) on the lattice (\(n \) here is the number of jumps made by the walk). Let \(D \) be a domain on the lattice and \(\partial D \) its boundary. Use the arguments similar to those in the lecture notes for the discrete Laplace equation in order to find the probabilistic interpretation for the discrete Poisson problem

\[
-u(x+1, y) - u(x-1, y) - u(x, y+1) - u(x, y-1) + 4u(x, y) = f(x, y) \text{ in } D,
\]

with the boundary condition \(u(x, y) = 0 \) if \((x, y) \in \partial D \). Pass to the continuum limit and obtain (formally, with no proof) the probabilistic interpretation for the solution of the Poisson problem posed in a two-dimensional domain \(\Omega \),

\[
-\Delta u = f(x, y), \quad (x, y) \in \Omega,
\]

with the boundary condition \(u = 0 \) on \(\partial \Omega \).