Problem 1: Show that there exist two countable sub-collections F_1, F_2 of pairwise disjoint intervals, such that $F_1 \cup F_2$ covers A.

We'll first cover $A \cap (0, 1)$, then extend to the whole \mathbb{R}, so assume for now that $A \subset (0, 1)$. The strategy is to initially cover A inductively by a countable collection of intervals that are not necessarily disjoint; afterwards we'll rearrange these intervals into 2 sub-collections, each of them disjoint.

Step 1. Constructing a countable cover for A.

Let $A_1 = A$, $G_1 = \{ I \in F : I \subset (0, 1) \text{ and center of } I \text{ is in } A_1 \}$, $\alpha_1 = \sup \{|I| : I \in G_1\} \leq 1$. If $\alpha_1 = 0$, there's nothing to prove. Otherwise, choose $I_1 \in G_1$ centered at $x_1 \in A_1$ with $|I_1| > 3/4\alpha_1$.

Given A_n, G_n, I_n for $i = 1, \ldots, n - 1$, define $A_n = A \setminus \bigcup_{i=1}^{n-1} I_i$, $G_n = \{ I \in F : I \subset (0, 1) \text{ and center of } I \text{ is in } A_n \}$, and $\alpha_n = \sup \{|I| : I \in G_n\}$. If $\alpha_n = 0$, then $A \subset \bigcup_{i=1}^{n-1} I_i$ (remember, the intervals are non-degenerate). Otherwise again pick $I_n \in G_n$ centered at $x_n \in A_n$ with $|I_n| > 3/4\alpha_n$.

First, $\alpha_n \to 0$: In deed, if $\alpha_n = 0$ for some n, we're done. Otherwise $\alpha_{n+1} \leq \alpha_n$, so $\alpha_n \downarrow \alpha \geq 0$. If $m > n$, then $x_m \notin I_n$, so $|x_m - x_n| \geq |I_n|/2 \geq 3/8\alpha_n \geq 3/8\alpha$. Therefore we have an infinite sequence x_n of elements in $(0,1)$ with distance between any two $\geq 3/8\alpha$, which can only happen if $\alpha = 0$.

Now we claim that $A \subset \bigcup I_n$. If not, let $x \in A \setminus \bigcup I_n$, and $I \subset (0,1)$ any interval in F centered at x. Since $x \in A \setminus \bigcup I_n$, then for all n, $x \in A_n$, so $I \in G_n$, therefore $|I| \leq \alpha_n$. But $\alpha_n \to 0$, hence $|I| = 0$, contradicting the non-degeneracy assumption.

Step 2. Getting rid of the 'redundant intervals'.

We'll now get a new sub-collection I'_n that has 'less' overlaps than the original one as follows: If $A \subset \bigcup_{i=1}^{\infty} I_n$, let $I'_1 = \emptyset$, otherwise $I'_1 = I_1$. In step n, if $A \subset \bigcup_{i=1}^{n-1} I'_i \cup (\bigcup_{i=n}^{\infty} I_i)$, let $I'_n = \emptyset$; otherwise $I'_n = I_n$. Then $A \subset \bigcup I'_n$, because by construction every point in A is contained only in finitely many of the I'_n's (if $x \in I_k$, then $\text{dist}(x, x_l) > 0$ for $l > k$, and $|I_n| \downarrow 0$), so we could not have removed all of them.

What we achieved this way is that at most two of the non-empty I'_n's overlap at any point, because if I_i, I_j, I_k all intersect, then one of them is included in the others, say I_k. But then $I'_1 = \emptyset$, contradicting the non-emptiness.

Step 3. Obtaining F_1 and F_2.

There are many ways to do this, but one nice way is using graph theory: let each I'_n be a vertex of a (possibly infinite) graph, and connect two vertexes iff the corresponding intervals overlap. By the remark above, this can have no cycles, so it’s a tree, and hence bipartite. This means that the vertexes can be arranged into two sets $S_{1,2}$, each of them with no edges in between. Then put the intervals belonging to the set S_1 into F_1.

Step 4. Covering A (not only $A \cap (0,1)$).

For each $n \in \mathbb{Z}$, pick an interval J_n of radius $<1/2$ if $n \in A$, otherwise do nothing. $\mathbb{R} \setminus (\bigcup J_n)$ is a disjoint union of open intervals, each $\subset (n, n+1)$ for some n, so pick the disjoint collections F^n_1, F^n_2, also disjoint from the J_n's. Then $F_1 = \bigcup_n F^n_1 \cup \{J_n\}_n$ and $F_2 = \bigcup_n F^n_2$.

Problem 2: Given an open set U, prove that there exists a countable disjoint collection of intervals \mathcal{J} such that $\bigcup_{I \in \mathcal{J}} I \subset U$ and $\mu(A \setminus \bigcup_{I \in \mathcal{J}} I) = 0$.

Using problem 1, find collections F_1, F_2 (each disjoint) of intervals in $U_1 = U$ that cover $A \cap U$. Then $\mu(A \cap (\bigcup_{I \in \mathcal{J}} I) \geq \mu(A \cap U)/2$, say for F_1. Then there exist finitely many disjoint intervals I_1, \ldots, I_{n_1} with $\mu(A \cap (\bigcup_{i=1}^{n_1} I_i)) \geq \mu(A \cap U) / 3$. Let $U_2 = U_1 \setminus (\bigcup_{i=1}^{n_1} I_i)$. This is again open, and $\mu(A \cap U_2) \leq 2/3\mu(A \cap U)$. Repeat the same with U_2 instead of U_1 to get $I_{n_1+1}, \ldots, I_{n_2}$ all disjoint from the previous I_i's and each other, and with $\mu(A \cap (U_2 \setminus (\bigcup_{i=n_1+1}^{n_2} I_i))) \leq 2/3\mu(A \cap U_2) \leq (2/3)^2 \mu(A \cap U)$. Continuing this way, we obtain a disjoint sequence I_1, I_2, \ldots that satisfies $\mu(A \setminus (\bigcup I_i)) \leq (2/3)^n \mu(A \cap U)$ for all n, therefore giving $\mu(A \setminus (\bigcup I_i)) = 0$.

Problem 3: Construct a monotone function that is discontinuous on a dense set on $[0, 1]$.
Let \(q_1, q_2, ... \) be an enumeration of rationals, and let \(f(x) := \sum 2^{-n} \chi_{(q_n, \infty)} \). \(f \) is monotone, as a sum of increasing functions. Furthermore, it’s discontinuous in \(\mathbb{Q} \): given \(n \), for all \(x > q_n \), \(f(x) \geq 2^n + f(q_n) \).

\[\square \]

Problem 4: Show that almost every \(x \) lies in at most finitely many of the \(E_k \)'s.

\[
\mu(\{ x \text{ lies in infinitely many } E_k \}) = \mu(E^c = \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_k) = \mu(E^c) = \lim_{n \to \infty} \mu(\bigcup_{k \geq n} E_k) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} \mu(E_k) = 0,
\]
since \(\sum \mu(E_k) < \infty \). Hence, almost every \(x \) lies in at most finitely many \(E_k \)'s.

\[\square \]

Problem 5: (i) Show that \(\phi_t(g) \to g(0) \).
(ii) How much can we weaken the regularity assumptions on \(\phi \) and \(g \)?

(i) Let \(M = \sup |g(x)| < \infty \) (since \(g \) is \(C^\infty \) and with compact support), and let \(\epsilon > 0 \). Then there exists a \(\delta > 0 \) s.t. \(|x| < \delta \) implies \(|g(x) - g(0)| < \epsilon \). Now noting that by a change of variables \(\int \phi_t(x) dx = 1 \), we get:

\[
|\phi_t(g) - g(0)| = \left| \int \phi_t(x)(g(x) - g(0)) dx \right| \leq \int |\phi_t(x)| |g(x) - g(0)| dx + \int \phi_t(x)|g(x) - g(0)| dx
\]

\[
\leq \epsilon \int_{|x| < \delta} \phi_t(x) dx + 2M \int_{|x| \geq \delta} \phi_t(x) dx \leq \epsilon \int \phi_t(x) dx + 2M \int_{|y| \geq \delta/t} \phi(y) dy
\]

But \(\int \phi = 1 \) implies that \(\int_{|y| \geq \delta/t} \phi \to 0 \) as \(t \to 0 \). Hence, \(\lim_{t \to 0} |\phi_t(g) - g(0)| \leq \epsilon \). Since this is true for every \(\epsilon \), the result follows.

(ii) In the proof above, all we needed was for \(g \) to be bounded and continuous, and \(\phi \) continuous. (The integrals all make sense if \(g \) and \(\phi \) are continuous, and \(\int \phi_t = 1 \).)

\[\square \]