Note: we only briefly mentioned in class how to compute the SVD. The textbook lists the algorithm on p. 234. You may find it useful in problems 1 and 3.

1. (Trefethen–Bau 4.1 a,c,d,e) Determine the SVD’s of the following matrices (by hand calculation):

 (a) \[
 \begin{pmatrix}
 3 & 0 \\
 0 & -2
 \end{pmatrix}
 \]

 (c) \[
 \begin{pmatrix}
 0 & 2 \\
 0 & 0
 \end{pmatrix}
 \]

 (d) \[
 \begin{pmatrix}
 1 & 1 \\
 0 & 0
 \end{pmatrix}
 \]

 (e) \[
 \begin{pmatrix}
 1 & 1 \\
 1 & 1
 \end{pmatrix}
 \]

2. (Trefethen–Bau 4.4) Call two matrices \(A, B \in \mathbb{C}^{m \times m} \) unitarily equivalent if \(A = QBQ^* \) for some unitary \(Q \). Is it true or false that \(A \) and \(B \) are unitarily equivalent if and only if they have the same singular values? Explain your answer. (Be sure to check both directions.)

3. (Trefethen–Bau 5.3a–f) Let \(A = \begin{pmatrix} -2 & 11 \\ -10 & 5 \end{pmatrix} \)

 (a) Though we did not prove this, it is true that if a matrix has real entries, then it has an SVD where all the matrices have real entries. Determine (on paper) a real SVD of \(A \) in the form \(A = U \Sigma V^T \). Such an SVD is not unique, so find the one with the minimal number of minus signs in \(U \) and \(V \).

 (b) List the singular values, left singular vectors, and right singular vectors of \(A \). Draw a picture of the unit ball in \(\mathbb{R}^2 \) and its image under \(A \) together with the singular vectors.

 (c) What are the 1-, 2-, \(\infty \)- and Frobenius norms of \(A \)?

 (d) Find an expression for \(A^{-1} \) in terms of \(U, V, \) and \(\Sigma \), and use this to find \(A^{-1} \).

 (e) Find the eigenvalues \(\lambda_1, \lambda_2 \) of \(A \).

 (f) Verify that \(\det A = \lambda_1 \lambda_2 \) and that \(|\det A| = \sigma_1 \sigma_2 \).

4. Suppose \(A \in \mathbb{C}^{m \times m} \) has an SVD \(A = U \Sigma V^* \). Diagonalize the \(2m \times 2m \) hermitian matrix

 \[B = \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} \]

 where each entry above denotes an \(m \times m \) matrix. (Hint: first consider what \(B \) does to vectors of the form \(\begin{pmatrix} x \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ x \end{pmatrix} \) where \(x = u_i \) or \(v_i \), and then construct eigenvectors of \(B \) out of such vectors.)

5. Let

 \[A = \begin{pmatrix} 1 & 1 \\ 0 & 10^{-10} \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \]

 and let

 \[\delta A = \begin{pmatrix} 0 & 0 \\ 10^{-10} & -10^{-10} \end{pmatrix} \]

 (a) Solve \(Ax = b \). Solve \((A + \delta A)y = b \). Compare the solutions \(x \) and \(y \).

 (b) Find the 1-, \(\infty \)-, and Frobenius norms of \(A \). You may give approximate answers.
(c) Find A^{-1} (using any method you like) and find the 1-, ∞-, and Frobenius norms of A^{-1} and hence the condition numbers $\kappa(A)$ with respect to these norms. Again, approximate answers are enough. Comment briefly on how this relates to your answer in (a).

6. For any invertible $m \times m$ matrix A, show that $\|A\|_2\|A^{-1}\|_2 \geq 1$. (Hint: you may use the fact that since the unit sphere in the 2-norm is closed and bounded, there exists a vector u with $\|u\|_2 = 1$ such that $\|Au\|_2 = \|A\|_2$. You only need this fact and the definition of induced matrix norm. In fact, the result holds for any p-norm, not just for $p = 2$.)