Math 206 Final Exam

Name:

- You have 2 hours and 50 minutes to complete this exam.
- No notes, books, calculators, or other references are allowed.
- You must show all work to receive credit. Answers for which no work is shown will receive no credit (unless specifically stated otherwise).
- There are problems on the front and back of each page. Make sure that you answer all of the questions. There is extra paper available if you need it.
- Good luck! Have fun! Eat candy as necessary.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1. (a) (8 points) Suppose that A is an $n \times n$ matrix. We gave at least 20 statements that are equivalent to the statement “A is invertible.” List 8 of these conditions. One of your conditions must be a criterion for invertibility that involves the eigenvalues of A, and one must be a criterion for invertibility that involves the determinant of A.
(b) (4 points) Use one of your conditions from (a) to determine whether the matrix

\[A = \begin{bmatrix}
1 & 3 & -2 \\
2 & 5 & -3 \\
-3 & 2 & -4
\end{bmatrix} \]

is invertible.
2. The \textit{augmented} matrices of three linear systems are given below in reduced row echelon form.

- System 1: \(Ax = b \),
 \[
 \begin{bmatrix}
 1 & 0 & 0 & | & 4 \\
 0 & 1 & 0 & | & 7 \\
 0 & 0 & 1 & | & -1 \\
 \end{bmatrix}
 \]

- System 2: \(By = c \),
 \[
 \begin{bmatrix}
 0 & 1 & -2 & 0 & | & 1 \\
 0 & 0 & 0 & 1 & | & 3 \\
 0 & 0 & 0 & 0 & | & 0 \\
 0 & 0 & 0 & 0 & | & 0 \\
 \end{bmatrix}
 \]

- System 3: \(Cz = d \),
 \[
 \begin{bmatrix}
 1 & 0 & 0 & | & 0 \\
 0 & 1 & 2 & | & 0 \\
 0 & 0 & 0 & | & 1 \\
 \end{bmatrix}
 \]

(a) (3 points) Which of the systems are consistent? Which are inconsistent?

(b) (3 points) How many solutions does each system have?

(c) (3 points) Which of the matrices \(A, B, C \) are invertible?
(d) (3 points) Find the rank of each matrix A, B, C.

(e) (3 points) Which of the matrices A, B, C have linearly independent columns?

3. (3 points) Suppose that X and Y are invertible 3×3 matrices such that $\det(X) = 7$ and $\det(Y) = 10$. Find $\det \left(2(YX)^T (XY)^{-1} \right)$.
4. (a) (2 points) If \(A \) is a nonzero \(5 \times 3 \) matrix, what is the maximum possible value of \(\text{rank}(A) \)?

(b) (2 points) Give an example of 4 linearly independent vectors in \(\mathbb{R}^3 \), or state that it is not possible to do so.

(c) (2 points) Give an example of 4 vectors that span \(\mathbb{R}^3 \), or state that it is not possible to do so.
5. (a) (4 points) Suppose that \(\mathbf{u} \) is a vector in \(\mathbb{R}^n \) such that \(\mathbf{u} \cdot \mathbf{u} = 1 \). Let \(P = \mathbf{uu}^T \) and \(Q = I_n - 2P \). Show that \(Q^2 = I_n \). Note: make sure that you completely justify all of your work on this problem. In particular, if you use a theorem or property discussed in class, make sure you state where and how you are using it.
(b) (3 points) Find all possible eigenvalues of \(Q \), where \(Q \) is the matrix from part (a). Note: even if you were not able to solve (a), you may use the fact that \(Q^2 = I_n \) to solve part (b).
6. Let
\[
A = \begin{bmatrix}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{bmatrix}
\text{ and } B = \begin{bmatrix}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{bmatrix}.
\]
For this problem, you may use the fact that both matrices have the same characteristic polynomial: \(p_A(\lambda) = p_B(\lambda) = -(\lambda - 1)(\lambda + 2)^2\).

(a) (4 points) Find all eigenvectors of \(A\).

(b) (4 points) Find all eigenvectors of \(B\).
(c) (2 points) Which matrix \(A \) or \(B \) is diagonalizable?

(d) (5 points) Diagonalize the matrix stated in (d), i.e. find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \) or \(B = PDP^{-1} \).
7. (8 points) Suppose that A is an $n \times n$ matrix such that all eigenvalues of A are positive. Explain why the matrix $A + I_n$ must be invertible.
8. Let A be an $m \times n$ orthogonal matrix, and let x and y be vectors in \mathbb{R}^n.

(a) (5 points) Show that $(Ax) \cdot (Ay) = x \cdot y$.

(b) (5 points) Use (a) to show that $||Ax|| = ||x||$.

9. (8 points) Let \(\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \) and \(\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \). Write \(\mathbf{y} \) as a sum of two orthogonal vectors, one in Span(\(\mathbf{u} \)) and one orthogonal to \(\mathbf{u} \).
10. Suppose that \(\{u_1, u_2, u_3\} \) is an orthogonal set of vectors in \(\mathbb{R}^4 \), and \(||u_1|| = 2 \), \(||u_2|| = 3 \), and \(||u_3|| = 4 \). Let \(y = 2u_1 - 5u_2 + u_3 \).

(a) (4 points) Find \(||y|| \).

(b) (4 points) Find \(y \cdot u_1 \).
11. (8 points) Determine whether each of the following statements is True or False. These questions will be scored as follows: +1 points for a correct answer, 0 points for no response, and \(-1/2\) points for an incorrect answer, with a minimum possible total score of 0.

(a) The only possible eigenvalue of an orthogonal matrix is \(\lambda = 1\).

(b) If \(A\) is an \(n \times n\) matrix such that \(\text{rref}(A) = I_n\), then \(\det(A) = 1\).

(c) If \(A\) and \(B\) are orthogonal matrices, then \(AB\) is also an orthogonal matrix.

(d) Every orthogonal matrix is invertible.

(e) It’s possible to find 10 linearly independent vectors in \(\mathbb{R}^{11}\).

(f) It’s possible to find 11 linearly independent vectors in \(\mathbb{R}^{10}\).

(g) If \(A\) is a \(4 \times 4\) matrix with eigenvalues \(0,1,2,3\), then \(\text{rank}(A) = 4\).

(h) If \(A\) and \(B\) are similar matrices, then \(A^2\) and \(B^2\) are also similar.