Math 206 Exam 2
Tuesday, November 17, 2009

Name:

- You have 50 minutes to complete this exam.
- No notes, books, calculators, or other references are allowed.
- You must show all work to receive credit. Answers for which no work is shown will receive no credit (unless specifically stated otherwise).
- There are problems on the front and back of each page. Make sure that you answer all of the questions. There is extra paper available if you need it.
- Good luck! Have fun! Eat candy as necessary.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
1. (6 points) Let

\[A = \begin{bmatrix} 2 & 0 & 10 \\ 0 & 7 + x & -3 \\ 0 & 4 & x \end{bmatrix}. \]

Find all values of \(x \) such that \(A \) is invertible. Make sure that you completely justify your answer.
2. (5 points total) Consider the matrix

\[A = \begin{bmatrix}
1 & 5 & 4 & 3 & 2 \\
1 & 6 & 6 & 6 & 6 \\
1 & 7 & 8 & 10 & 12 \\
1 & 6 & 6 & 7 & 8 \\
\end{bmatrix}. \]

You may use the fact that

\[\text{rref}(A) = \begin{bmatrix}
1 & 0 & -6 & 0 & 6 \\
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}. \]

(a) (3 points) Find a basis for the nullspace of \(A \).

(b) (2 points) Find a non-zero vector that is not one of the columns of \(A \) in the column space of \(A \). Make sure that you clearly explain why the vector you provide is in the column space of \(A \).
3. (4 points) Suppose that A is a 5×8 matrix such that

\[
\begin{align*}
\begin{bmatrix} 7 \\ 0 \\ 4 \\ 1 \\ 2 \end{bmatrix}, & \quad \begin{bmatrix} -3 \\ 1 \\ 2 \\ -6 \\ 8 \end{bmatrix}, & \quad \begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \\ 1 \end{bmatrix}
\end{align*}
\]

is a basis for the column space of A. Find p and q so that the following statement is true: The nullspace of A is a p-dimensional subspace of \mathbb{R}^q.
4. (8 points total) Consider the matrix

\[A = \begin{bmatrix} 7 & 8 \\ -4 & -5 \end{bmatrix}. \]

(a) (2 points) Find all eigenvalues of \(A \).

(b) (6 points) Find a basis for each eigenspace of \(A \).
5. (6 points) Suppose that λ is an eigenvalue of an invertible matrix A with corresponding eigenvector \mathbf{v}. Determine whether \mathbf{v} is an eigenvector of the matrix $A + cI_n$, where c is a scalar. If so, what is the corresponding eigenvalue?
6. (8 points total) The trace of an $n \times n$ matrix A is the sum of the entries on the main diagonal of the matrix, and is denoted $\text{tr}(A)$. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(a) (4 points) Show that the characteristic polynomial of A is

$$p(\lambda) = \lambda^2 - \text{tr}(A)\lambda + \det(A).$$

(b) (4 points) Suppose that A has two distinct, real eigenvalues λ_1 and λ_2. Show that

$$\text{tr}(A) = \lambda_1 + \lambda_2.$$
7. (8 points) Suppose that \[
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
\] is a basis for the nullspace of the matrix \(A + 5I_3 \) and that \[
\begin{pmatrix}
2 \\
0 \\
4
\end{pmatrix}
\] is a basis for the nullspace of the matrix \(A - 2I_3 \). Find \(A^2 \begin{pmatrix}
3 \\
-2 \\
5
\end{pmatrix} \).
8. (5 points) Determine whether each of the following statements is True or False. These questions will be scored as follows: +1 points for a correct answer, 0 points for no response, and \(-1/2\) points for an incorrect answer.

(a) If \(A\) and \(B\) are \(n \times n\) matrices, and \(P\) is an invertible \(n \times n\) matrix such that \(A = PBP^{-1}\), then \(\det(A) = \det(B)\).

(b) If the characteristic polynomial of an \(n \times n\) matrix \(A\) is \(p(\lambda) = (\lambda - 1)^n + 2\), then \(A\) is invertible.

(c) If \(A^2\) is an invertible \(n \times n\) matrix, then \(A^3\) is also invertible.

(d) If \(A\) is a \(3 \times 3\) matrix such that \(\det(A) = 7\), then \(\det(2A^T A^{-1}) = 2\).

(e) If \(v\) is an eigenvector of an \(n \times n\) matrix \(A\) with corresponding eigenvalue \(\lambda_1\), and if \(w\) is an eigenvector of \(A\) with corresponding eigenvalue \(\lambda_2\), then \(v + w\) is an eigenvector of \(A\) with corresponding eigenvalue \(\lambda_1 + \lambda_2\).