Problem 1. Let \(P_0 = (0, y_0) \) and \(P_1 = (0, y_1) \) be two points on the vertical line \(L = \{(0, y) | y > 0\} \subset \mathbb{H}^2 \) and \(y_1 > y_0 \). Let \(g \) be a hyperbolic geodesic passing through \(P_0 \). Show that the followings are equivalent:

1. \(P_0 \) is the closest point to \(P_1 \) on \(g \) (with respect to the hyperbolic distance function on \(\mathbb{H}^2 \)).

2. \(g \) is the complete geodesic orthogonal to \(L \) at \(P_0 \): it is the Euclidean semi-circle centered at \((0, 0)\) going through \((0, y_0)\).

Problem 2. Consider three semicircles \(C, C', C_0 \) that are mutually tangent at points on a line \(L \subset \mathbb{R}^2 \) and \(C', C_0 \) are inside of \(C \). Inscribe a chain of circles \(C_1, \ldots, C_n \) such that each \(C_i \) is tangent to \(C_{i-1}, C \) and \(C' \). Show that the center of \(C_i \) is at a distance \(i \times d_i \) from \(L \), where \(d_i \) is the diameter of \(C_i \).

Problem 3. Let \(C_1 \) be a circle lying within the interior of a second circle \(C_2 \). Suppose that there exists a chain of circles such that each circle is tangent to both \(C_1 \) and \(C_2 \), and such that adjacent circles are tangent. Show that if one such chain exists, then no matter where we start the circle, we will end up with a chain.

Problem 4. Given two distinct points \(z_1, z_2 \in \mathbb{H}^2 \). Let \(x_1, x_2 \in \mathbb{R} \cup \{\infty\} \) be the two end points of the complete geodesic \(g \) passing through \(z_1 \) and \(z_2 \) such that \(x_1, z_1, z_2 \) and \(x_2 \) occur in this order on \(g \). Show that

\[
d_{\text{hyp}}(z_1, z_2) = \log\left(\frac{(z_1 - x_2)(z_2 - x_1)}{(z_1 - x_1)(z_2 - x_2)}\right).
\]

Problem 5. Let \(P = (x, y) \in \mathbb{H}^2 \). Show that the ball \(B_{\text{hyp}}(P, r) \) centered at \(P \) is the Euclidean disc with Euclidean radius \(2y \sinh(r) \) and with Euclidean center \((x, 2y \cosh(r)) \).

Problem 6. It is a theorem in Euclidean geometry that the medians of a triangle are concurrent. Does this theorem also hold in \(\mathbb{H}^2 \)?

Problem 7. Assume that \(P \) lies on the hyperbolic circle \(B_{\text{hyp}}(Q, R) \subset \mathbb{H}^2 \), show that:

- There is a unique \(h \)-tangent to \(C \) at \(P \), and
- the tangent line is perpendicular to the \(h \)-line \(PQ \).
Problem 8.

1. The point A lies on the h-circle with diameter BC if and only if $\angle BAC = \angle ABC + \angle ACB$.

2. Assume that for triangles $\triangle_1 = ABC$ and $\triangle_2 = PQR$ in \mathbb{H}^2 we have:

 - $d_{hyp}(A, B) = d_{hyp}(P, Q)$,
 - $\angle BAC = \angle QPR$, and
 - $d_{hyp}(A, C) = d_{hyp}(P, R)$,

 Show that these triangles are congruent: there exists an isometry ϕ of \mathbb{H}^2 such that $\phi(\triangle_1) = \triangle_2$.

Problem 9. Prove that if g_0 and g_1 are complete hyperbolic geodesics in \mathbb{H}^2 sharing an end point at infinity (on the line $\{(x, 0) \mid x \in \mathbb{R}\}$), then there does not exist a hyperbolic geodesic perpendicular to both these geodesics.