I. Show that a smooth n-manifold can be embedded as a submanifold and a closed subset of \mathbb{R}^{2n+1}.

(Hint: Let h be a smooth proper map $h : M \to \mathbb{R}$. Use the method we discussed to prove Whitney embedding theorem to find a proper embedding $f : M \to \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1} \times \mathbb{R}$.)

II. Let M be a smooth n-manifold (i.e. M is a topological manifold equipped with a particular smooth structure $[A]$ which we omit from the notation.)

Definition A: An A-orientation of M is an orientation μ of the underlying topological manifold. More precisely, μ is a family of generators $\mu_x \in H_n(M, M - \{x\})$. They are required to satisfy a continuity condition, cf. Hatcher.

Definition B: An atlas A in the smooth structure of M is oriented if $\det(D(h'oh^{-1})(x)) > 0$ for all $h, h' \in A$ and all x for which $h'oh^{-1}(x)$ is defined. Two oriented atlases A, A_0 are equivalent if the union $A \cup A_0$ is again an oriented atlas. A B-orientation on M is an equivalence class of oriented atlases.

Definition C: A C-orientation on M is a form $\omega(M) \in \Omega^n(M)$ such that $\omega(x) \neq 0 \in \text{Alt}^n(T_xM)$ for all $x \in M$.

Given an A-orientation of M, we let A_{max} be the maximal atlas for the smooth structure. Let $A(\mu) = \{(h, U, U') \mid h : U \to U' \text{ preserves local atlas}\}$.

Prove that $\mu \to A$ gives a bijection between the set of A-orientations of M and the set of B-orientations. Also, construct a bijection between the set of B-orientations and the set of C-orientations on M.

III. Let $X \subset \mathbb{R}^m$ be a locally closed set, $N \subset \mathbb{R}^n$ a boundaryless smooth manifold and $f : X \to N$ a continuous proper mapping. Show that there is a positive continuous function $\epsilon : X \to \mathbb{R}$ such that every continuous mapping $g : X \to N$ with $|f(x) - g(x)| < \epsilon(x)$ for all $x \in X$ is properly homotopic to f.

Remark. A proper homotopy is simply a homotopy $H : [0, 1] \times M \to N$ that is a proper mapping.

IV. Let M and N be smooth manifolds and $g : M \to N$ be a continuous function. Let A be a closed subset of M. Show that g is homotopic relative to A to a map that is smooth on $M - A$.

V. Suppose M is a smooth, compact manifold that admits a nowhere vanishing vector field. Show that there exists a smooth map $F : M \to M$ that is homotopic to the identity and has no fixed points.
6. Let C be a compact subset of $[0, 1]$ with measure zero. Show C is equal to the set of critical values of a C^1 function $g : \mathbb{R} \to \mathbb{R}$. Is the same statement true if we replace C^1 by C^∞?

7. Construct a C^1 map $f : \mathbb{R}^2 \to \mathbb{R}$ such that the set of critical values of f contains an open interval $I \subset \mathbb{R}$.

Hint: Let $B = \{ \sum_i a_i \cdot \frac{3^i}{2^i} \mid a_i \in \{0, 2\} \} \subset [0, 1]$ be the Cantor ternary set. Construct a differentiable function $h : \mathbb{R} \to \mathbb{R}$ such that for any $y \in B$, $h'(y) = 0$ and $h(y) \in B$, and $h \in C^1$.

2