5.3. Sphere preserving transformations

In Chapter 2 we read a paper of Carathéodory proving that transformations of the plane that map circles to circles are extended Möbius transformations, i.e. linear fractional transformations in \(z \) or \(\bar{z} \), and hence are compositions of inversions and similarities. In this spirit we prove the following theorem of Möbius, which assumes the continuity of the mapping.

Theorem 5.6. Let \(f : U \to f(U) \) be a continuous 1-1 mapping defined on an open set in \(\mathbb{R}^n \), and suppose that \(f \) maps (pieces of) planes and spheres in \(U \) to (pieces of) planes and spheres in \(f(U) \) (not necessarily respectively). Then \(f \) is a composition of similarities and inversions.

Proof. For any \(x \in U \) choose \(x_0 \neq x \) in \(U \) and a ball \(B_r(x_0) \) such that the closed ball \(\bar{B}_r(x_0) = B_r(x_0) \cup S_r(x_0) \subset U \) but \(x \notin \bar{B}_r(x_0) \). Let \(y_0 = f(x_0) \), and let \(S_r(y_0) \) be any sphere about \(y_0 \). Let \(g \) and \(h \) be inversions in \(S_r(x_0) \) and \(S_r(y_0) \) respectively. Then \(h \circ f \circ g \) is defined on the exterior of \(\bar{B}_r(x_0) \), and the image of a hyperplane lying in this exterior is a hyperplane. Thus, considering intersections, \(h \circ f \circ g \) maps lines to lines. Also parallel lines \(l_1 \) and \(l_2 \) are mapped to parallel lines, even if the plane of the lines meets \(\bar{B}_r(x_0) \), for there exist non-parallel planes \(\pi_1 \) and \(\pi_2 \) containing \(l_1 \) and \(l_2 \) respectively, but not meeting \(\bar{B}_r(x_0) \), and \(l = \pi_1 \cap \pi_2 \) is parallel to both \(l_1 \) and \(l_2 \).

Now \(x \notin \bar{B}_r(x_0) \); therefore \(x \) is in the domain of \(h \circ f \circ g \). Let \(T_x : \mathbb{R}^n \to \mathbb{R}^n \) be translation by \(x \), i.e. the vector \(v \in \mathbb{R}^n \) is mapped to the vector \(v + x \). Then, setting \(y = (h \circ f \circ g)(x) \), we see that

\[
\varphi = T_{-y} \circ h \circ f \circ g \circ T_x
\]