THE Riemann Zeta Function on Vertical Arithmetic Progressions

XIANNAN LI AND MAKSYM RADZIWILL

Abstract. We show that the twisted second moments of the Riemann zeta function averaged over the arithmetic progression $\frac{1}{2} + i(an + b)$ with $a > 0$, $b$ real, exhibits a remarkable correspondence with the analogous continuous average and derive several consequences. For example, motivated by the linear independence conjecture, we show at least one third of the elements in the arithmetic progression $an + b$ are not the ordinates of some zero of $\zeta(s)$ lying on the critical line. This improves on earlier work of Martin and Ng. We then complement this result by producing large and small values of $\zeta(s)$ on arithmetic progressions which are of the same quality as the best $\Omega$ results currently known for $\zeta(\frac{1}{2} + it)$ with $t$ real.

1. Introduction

In this paper, we study the behavior of the Riemann zeta function $\zeta(s)$ in vertical arithmetic progressions on the critical line. To be more precise, fix real numbers $\alpha > 0$ and $\beta$ and $B(s)$ be an arbitrary Dirichlet polynomial. Throughout we will assume that the coefficients $b(n)$ are real.

1.1. Mean value estimates. The distribution of values of $\zeta(s)$ on the critical line has been studied extensively by numerous authors and in particular the moments of $\zeta(s)$ have received much attention. Consider a Dirichlet polynomial $B(s)$ with,

\[
B(s) = \sum_{n \leq T^\theta} \frac{b(n)}{n^s}, \quad \text{and} \quad b(n) \ll d_A(n)
\]

for some fixed, but arbitrary $A > 0$. Throughout we will assume that the coefficients $b(n)$ are real.

The second author is partially supported by a NSERC PGS-D award.
Theorem 1. Let $B(s)$ be as above. Let $\phi(\cdot)$ be a smooth compactly supported function, with support in $[1,2]$. If $\theta < \frac{1}{2}$, then as $T \to \infty$,

$$\sum_{t} |\zeta(\frac{1}{2} + it)B(\frac{1}{2} + it)|^2 \cdot \phi\left( \frac{t}{T} \right) = \int_{\mathbb{R}} |\zeta(\frac{1}{2} + it)B(\frac{1}{2} + it)|^2 \cdot \phi\left( \frac{t}{T} \right) dt + O_A(T(\log T)^{-A}).$$

Since $\zeta(s)B(s)$ oscillates on a scale of $2\pi/\log T$ it is interesting that we can reconstruct accurately the continuous average of $\zeta(s)B(s)$ only by sampling at the integers. The reader may be amused by examining the same statement for $\sin(\log(x))$. In contrast to Theorem 2, the dependence on the diophantine properties of $e^x$ is nullified in the context of Theorem 1 when $B$ is a mollifier. To be precise, let $\phi(\cdot)$ be a smooth compactly supported function, with support in $[1,2]$, and define

$$M_\theta(s) := \sum_{n \leq T^\theta} \frac{\mu(n)}{n^{s}} \cdot \left( 1 - \frac{\log n}{\log T^\theta} \right).$$

Then we have the following Theorem.

Theorem 2. Let $\phi(\cdot)$ be a smooth compactly supported function, with support in $[1,2]$. Let $\alpha > 0$, $\beta$ be real numbers. Then, as $T \to \infty$,

$$\sum_{t} |\zeta(\frac{1}{2} + i(\alpha t + \beta))|^2 \cdot \phi\left( \frac{t}{T} \right) = \int_{\mathbb{R}} |\zeta(\frac{1}{2} + i(\alpha t + \beta))|^2 \cdot \phi\left( \frac{t}{T} \right) dt \cdot (1 + \delta(\alpha, \beta) + o(1))$$

Our methods allow us to partially evaluate the second moment of $\zeta(s)$ twisted by a Dirichlet polynomial over an arbitrary vertical arithmetic progression (See Proposition 1 below).

In contrast to Theorem 2, the dependence on the diophantine properties of $\alpha$ and $\beta$ is nullified in the context of Theorem 1 when $B$ is a mollifier. To be precise, let $\phi(\cdot)$ be a smooth compactly supported function, with support in $[1,2]$, and define

$$M_\theta(s) := \sum_{n \leq T^\theta} \frac{\mu(n)}{n^{s}} \cdot \left( 1 - \frac{\log n}{\log T^\theta} \right).$$

Then we have the following Theorem.

Theorem 3. Let the mollified second moment be defined as

$$(2) \quad \mathcal{J} := \sum_{t} |\zeta(\frac{1}{2} + i(\alpha t + \beta))M_\theta(\frac{1}{2} + i(\alpha t + \beta))|^2 \phi\left( \frac{t}{T} \right).$$

Let $0 < \theta < \frac{1}{2}$ and $a > 0$ and $b$ be real numbers. Then,

$$\mathcal{J} = \int_{\mathbb{R}} |(\zeta \cdot M_\theta)(\frac{1}{2} + i(at + b))|^2 \cdot \phi\left( \frac{t}{T} \right) dt + O\left( \frac{T}{(\log T)^{1-\varepsilon}} \right)$$

The lack of dependence on the diophantine properties of $\alpha$ and $\beta$ in Theorem 3 gives the non-vanishing proportion of $\frac{1}{4}$ (independent of $\alpha$ and $\beta$) in Theorem 4 below.
1.2. Non-vanishing results. One of the fundamental problems in analytic number theory is determination of the location of the zeros of $L$-functions. Here, one deep conjecture about the vertical distribution of zeros of $\zeta(s)$ is the Linear Independence Conjecture (LI), which states that the ordinates of non-trivial zeros of $\zeta(s)$ are linearly independent over $\mathbb{Q}$. In general, it is believed that the zeros of $L$-functions do not satisfy any algebraic relations, but rather appear to be “random” transcendental numbers. Classically, Ingham [3] linked the linear independence conjecture for the Riemann zeta-function with the oscillations of $M(x) = \sum_{n \leq x} \mu(n)$, in particular offering a conditional disproof of Merten’s conjecture that $|M(x)| \leq \sqrt{x}$ for all $x$ large enough. There are a number of connections between LI and the distribution of primes. For instance, Rubinstein and Sarnak [10] showed a connection between LI for Dirichlet $L$-functions and prime number races, and this has appeared in the work of many subsequent authors.

LI appears to be far out of reach of current technology. However, it implies easier conjectures which may be more tractable. One of these is that the vertical ordinates of nontrivial zeros of $\zeta(s)$ should not lie in an arithmetic progression. To be more precise, for fixed $\alpha > 0$, let

$$P_{\alpha,\beta}(T) = \frac{1}{T} \cdot \text{Card}\{T \leq \ell \leq 2T : \zeta(\frac{1}{2} + i(\alpha \ell + \beta)) \neq 0\}.$$  

Then what kind of lower bounds can we prove for $P_{\alpha,\beta}(T)$ for large $T$? Recently, improving on the work of numerous earlier authors, Martin and Ng [8] showed that $P_{\alpha,\beta}(T) \gg_{\alpha,\beta} (\log T)^{-1}$ which misses the truth by a factor of $\log T$. In this paper, we prove the following improvement.

**Theorem 4.** Let $\alpha > 0$ and $\beta$ be real. Then, as $T \to \infty$,

$$P_{\alpha,\beta}(T) \geq \frac{1}{3} + o(1).$$

The proof of Theorem 4 leads easily to the result below.

**Corollary 1.** Let $\alpha > 0$ and $\beta$ be real. Then, as $T \to \infty$,

$$|\zeta(\frac{1}{2} + i(\alpha \ell + \beta)| \geq \varepsilon(\log \ell)^{-1/2}$$

for more than $(\frac{1}{3} - C\varepsilon)T$ integers $T \leq \ell \leq 2T$, with $C$ an absolute constant.

Theorem 4 is proven by understanding both a mollified discrete second moment (see Theorem 3) and a mollified discrete first moment. Our methods extend without modification to prove the analogous result for Dirichlet $L$-functions. The constants $\frac{1}{3}$ represents the limits of the current technology - see for example [4] for the case of non-vanishing of Dirichlet $L$-functions at the critical point.

Of course, we expect that $P_{\alpha,\beta}(T) = 1 + O(T^{-1})$. Assuming the Riemann Hypothesis (RH), Ford, Soundararajan and Zaharescu [2] showed $P_{\alpha,\beta}(T) \geq \frac{1}{2} + o(1)$ as $T \to \infty$. Assuming RH and Montgomery’s Pair Correlation Conjecture they’ve showed [2] that $P_{\alpha,\beta}(T) \geq 1 - o(1)$ as $T \to \infty$. Assuming a very strong hypothesis on the distribution of primes in short intervals, it is possible to show that $P_{\alpha,\beta}(T) = 1 - O(T^{-\delta})$ for some $\delta > 0$.

Note that the rigid structure of the arithmetic progression is important. Since there is a zero of $\zeta(s)$ in every interval of size essentially $(\log \log \log T)^{-1}$ in $[T, 2T]$ (see [7]) minor perturbations of the arithmetic progression renders our result false.
1.3. Large and small values. We now complement Theorem 4 by exhibiting large and small values of $\zeta(s)$ at discrete points $\frac{1}{2} + i(\alpha \ell + \beta)$ using Soundararajan’s resonance method [12].

**Theorem 5.** Let $\alpha > 0$ and $\beta$ be real. Then, for infinitely many $\ell > 0$,

$$|\zeta(\frac{1}{2} + i(\alpha \ell + \beta))| \gg \exp \left( (1 + o(1)) \sqrt{\frac{\log \ell}{6 \log \log \ell}} \right)$$

and for infinitely many $\ell$,

$$|\zeta(\frac{1}{2} + i(\alpha \ell + \beta))| \ll \exp \left( -(1 + o(1)) \sqrt{\frac{\log \ell}{6 \log \log \ell}} \right).$$

Since we expect $\zeta(\frac{1}{2} + i(\alpha \ell + \beta)) \neq 0$ for essentially all $\ell$, it is interesting to produce values of $\ell$ at which $\zeta(\frac{1}{2} + i(\alpha \ell + \beta))$ is extremely small. Furthermore, the large values of $\zeta(\frac{1}{2} + i(\alpha \ell + \beta))$ over a discrete set of points above are almost of the same quality as the best results for large values of $\zeta(\frac{1}{2} + it)$ with $t$ real. In the latter case, the best result is due to Soundararajan [12]. We have not tried to optimize in Theorem 5 and perhaps the same methods might lead to the constant 1 rather than $1/\sqrt{6}$.

1.4. Technical propositions. The proofs of our Theorems rests on a technical Proposition, and its variant, which may be of independent interest. With $B(s)$ defined as in (1), consider the difference between the discrete average and the continuous average,

$$\mathcal{E} := \sum_{\ell} |(\zeta \cdot B)(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi \left( \frac{\ell}{T} \right) - \int_{\mathbb{R}} |(\zeta \cdot B)(\frac{1}{2} + i(\alpha t + \beta))|^2 \phi \left( \frac{t}{T} \right) dt.$$

Proposition 1 below shows that understanding $\mathcal{E}$ boils down to understanding the behavior of sums of the form

$$\sum_{m,n \leq T^\theta} \frac{b(m)b(n)}{mn} \cdot (ma_\ell, nb_\ell) \cdot \mathcal{H} \left( (\alpha t + \beta) \cdot \frac{(ma_\ell, nb_\ell)^2}{2\pi ma_\ell nb_\ell} \right),$$

where $\mathcal{H}(x)$ is a smooth function such that,

$$\mathcal{H}(x) = \begin{cases} \frac{1}{2} \cdot \log x + \gamma + O_A(x^{-A}) & \text{if } x \gg 1 \\ O_A(x^A) & \text{if } x \ll 1 \end{cases}$$

As seen in a theorem of Balasubramanian, Conrey and Heath-Brown [1] the continuous $t$ average over $T \leq t \leq 2T$ of $|(\zeta(\frac{1}{2} + it)B(\frac{1}{2} + it))|^2$ gives rise to (3) with $a_\ell = b_\ell = 1$. For technical reasons it is more convenient to work with the following smooth version of (3) (although the two equations are equal),

$$F(a_\ell, b_\ell, t) := \sum_{r \geq 1} \frac{1}{r} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{mn} \sum_{m,n \geq 1 \atop mk = a \ell \atop nh = b \ell} W \left( \frac{2\pi mn}{\alpha t + \beta} \right)$$

where $W(x)$ is a smooth function defined as

$$W(x) := \frac{1}{2\pi i} \int_{(c)} x^{-w} \cdot G(w) \frac{dw}{w}$$

with $G(w)$ an entire function of rapid decay along vertical lines $G(x + iy) \ll x^A |y|^{-A}$, such that $G(w) = G(-w)$, $G(0) = 1$, and satisfying $G(\bar{w}) = G(w)$ (to make $W(x)$ real
valued for $x$ real). For example we can take $G(w) = e^{w^2}$. Notice that $W(x) \ll 1$ for $x \leq 1$ and $W(x) \ll x^{-A}$ for $x > 1$.

**Proposition 1.** Let $0 < \theta < 1/2$. For each $\ell > 0$, let $(a_\ell, b_\ell)$ denote (if it exists) the unique tuple of co-prime integers such that $a_\ell b_\ell > 1$, $b_\ell < T^{1/2 - \epsilon - \pi^2/\alpha}$ and

$$|\frac{a_\ell}{b_\ell} - e^{2\pi \ell/\alpha}| \leq \frac{e^{2\pi \ell/\alpha}}{T^{1-\epsilon}}.$$  

If such a pair $(a_\ell, b_\ell)$ exists, then let

$$H(\ell) = \frac{(a_\ell/b_\ell)^{i\beta}}{\sqrt{a_\ell b_\ell}} \int_{-\infty}^\infty \phi \left( \frac{t}{T} \right) \cdot \exp \left( -2\pi it \left( \frac{\alpha \log \frac{2a_\ell}{b_\ell}}{2\pi} - \ell \right) \right) \cdot F(a_\ell, b_\ell, t) dt,$$

and otherwise set $H(\ell) = 0$. Then,

$$\mathcal{E} = 4\text{Re} \sum_{\ell > 0} H(\ell) + O(T^{1-\epsilon}).$$

More generally we can consider

$$\mathcal{E}' = \sum_\ell |B(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi \left( \frac{\ell}{T} \right) - \int_{\mathbb{R}} |B(\frac{1}{2} + i(\alpha t + \beta))|^2 \phi \left( \frac{t}{T} \right) dt.$$

In this case our results depend on

$$F'(a_\ell, b_\ell) := \sum_{r \geq 1} \frac{b(a_\ell r) b(b_\ell r)}{r}$$

where we adopted the convention that $b(n) = 0$ for $n > T^\theta$. Then the analogue of Proposition 1 is stated below.

**Proposition 2.** Let $0 < \theta < 1$. For each $\ell > 0$ let $(a_\ell, b_\ell)$ denote (if it exists) the unique tuple of co-prime integers such that $a_\ell b_\ell > 1$, $b_\ell < T^{1/2 - \epsilon - \pi^2/\alpha}$ and

$$|\frac{a_\ell}{b_\ell} - e^{2\pi \ell/\alpha}| \leq \frac{e^{2\pi \ell/\alpha}}{T^{1-\epsilon}}.$$  

Then,

$$\mathcal{E}' = 2\text{Re} \sum_{\ell > 0} \frac{(a_\ell/b_\ell)^{i\beta}}{\sqrt{a_\ell b_\ell}} \cdot \phi \left( \frac{\alpha \log \frac{2a_\ell}{b_\ell}}{2\pi} - \ell \right) F'(a_\ell, b_\ell) + O(T^{1-\epsilon})$$

where in the summation over $\ell$ we omit the terms for which the pair $(a_\ell, b_\ell)$ does not exist.

The proof of Proposition 2 is very similar (in fact easier!) than that of Proposition 1, and for this reason we omit it.

One can ask about the typical distribution of $\log \zeta(\frac{1}{2} + i(\alpha \ell + \beta))$. This question is out of reach if we focus on the real part of $\log \zeta(s)$ since we cannot even guarantee that almost all $\frac{1}{2} + i(\alpha \ell + \beta)$ are not zeros of the Riemann zeta-function. On the Riemann Hypothesis, using Proposition 2 and Selberg’s methods, one can prove a central limit theorem for $S(\alpha \ell + \beta)$ with $T \leq \ell \leq 2T$. We will not pursue this application here.

We deduce Theorems 1 and 2 from Proposition 1 in Section 2. We then prove Theorem 3 in Section 3, complete the proof of Theorem 4 in Section 4, and prove Theorem 5 in Section 5. Finally, we prove Proposition 1 in Section 6.
2. Proof of Theorems 1 and 2

Proof of Theorem 1. Set \( \alpha = 1 \) and \( \beta = 0 \). By Proposition 1 it is enough to show that \( \mathcal{E} \ll T(\log T)^{-A} \). Since \( W(x) \ll x^{-A} \) for \( x > 1 \) and \( W(x) \ll 1 \) for \( x \leq 1 \), we have, for \( T \leq t \leq 2T \)

\[
F(a_\ell, b_\ell, t) \ll 1 + \sum_{r \geq 1} \frac{1}{r} \sum_{h,k \leq t^\theta} |b(k)b(h)| \sum_{m,n \leq T^{1+\varepsilon}} \sum_{\substack{mk = a_\ell r \\nh = b_\ell r}} 1 \ll \sum_{r \leq T^2} \frac{c(a_\ell r)c(b_\ell r)}{r} + 1
\]

where \( c(n) := \sum_{d|n} |b(d)| \ll d_{A+1}(n) \). Therefore \( F(a_\ell, b_\ell, t) \ll (a_\ell b_\ell)^\varepsilon T(\log T)^B \) for some large \( B > 0 \). It thus follows by Proposition 1, that

\[
\mathcal{E} \ll T(\log T)^B \cdot \sum_{\ell > 0} (a_\ell b_\ell)^{-1/2+\varepsilon}
\]

Because of (5) we have \( a_\ell b_\ell \gg e^{2\pi \ell} \). Therefore the \( \ell \)'s with \( \ell \geq (\log \log T)^{1+\varepsilon} \) contribute \( \ll_A T(\log T)^{-A} \). We can therefore subsequently assume that \( \ell \ll (\log \log T)^{1+\varepsilon} \). In order to control \( a_\ell \) and \( b_\ell \), when \( \ell \leq (\log \log T)^{1+\varepsilon} \) we appeal to a result of Waldschmidt (see [13], p. 473),

\[
\left| e^{\pi m} - \frac{p}{q} \right| \geq \exp \left( -272 \log(2m) \log p \cdot \log \log p \right).
\]

Therefore if condition (5) is satisfied then \( e^{2\pi \ell T^{-1+\varepsilon}} \geq \exp(-c(\log \ell) \cdot (\log \log T)^{1+\varepsilon}) \). Therefore, using that \( \ell \leq (\log \log T)^{1+\varepsilon} \) we get \( (\log \log T)^{1+\varepsilon} \) we get \( (\log \log T)^{1+\varepsilon} \) we get \( (a_\ell b_\ell)^{-1} \), and hence \( \log a_\ell \gg \log \log T(\log \log T)^{1+\varepsilon} \). Notice also that (5) implies that \( a_\ell b_\ell \gg e^{2\pi \ell} \), so that \( \sum_{\ell > 0} (a_\ell b_\ell)^{-\alpha} = O(1) \) for any \( \alpha > 0 \). Combining these observations we find

\[
\sum_{0 < t < (\log \log T)^{1+\varepsilon}} (a_\ell b_\ell)^{-1/2+\varepsilon} \ll e^{-c(\log \log T)^{1+\varepsilon}} \sum_{\ell > 0} (a_\ell b_\ell)^{-1/4} \ll e^{-c(\log \log T)^{1+\varepsilon}}.
\]

Thus \( \mathcal{E} \ll_A T(\log T)^{-A} \) for any fixed \( A > 0 \), as desired.

It is possible to generalize this theorem to other progressions, for example to those for which \( 2\pi/\alpha \) is algebraic. We refer the reader to [13] for the necessary results in diophantine approximation.

Proof of Theorem 2. Set \( B(s) = 1 \) in Proposition 1. Then, keeping notation as in Proposition 1, we get

\[
\sum_{\ell} |\zeta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \cdot \phi \left( \frac{\ell}{T} \right) = \int_{\mathbb{R}} |\zeta(\frac{1}{2} + i(\alpha t + \beta))|^2 \cdot \phi \left( \frac{t}{T} \right) dt + \mathcal{E}
\]

The main term is \( \sim \hat{\phi}(0) T \log T \). It remains to understand \( \mathcal{E} \).

First case. First suppose that \( e^{2\pi \ell/\alpha} \) is irrational for all \( \ell > 0 \). Since \( b(k) = 1 \) if \( k = 1 \) and \( b(k) = 0 \) otherwise it is easy to see that \( F(a_\ell, b_\ell, t) \ll T \log T \) uniformly in \( a_\ell, b_\ell \) and \( T \leq t \leq 2T \). Thus,

\[
\mathcal{E} \ll T \log T \sum_{\ell > 0} (a_\ell b_\ell)^{-1/2}
\]

It remains to show that \( \sum_{\ell > 0} (a_\ell b_\ell)^{-1/2} = o(1) \) as \( T \to \infty \). Let \( \varepsilon > 0 \) be given. Since \( a_\ell b_\ell \gg e^{2\pi \ell/\alpha} \) we can find an \( A \) such that \( \sum_{\ell > A} (a_\ell b_\ell)^{-1/2} \leq \varepsilon \). For the remaining integers
ℓ ≤ A notice that \( e^{2\pi \ell/\alpha} \) is irrational for each \( \ell ≤ A \). Therefore for each \( \ell ≤ A \),

\[
(7) \quad \left| \frac{a_\ell}{b_\ell} - e^{2\pi \ell/\alpha} \right| ≤ \frac{e^{2\pi \ell/\alpha}}{T^{1-\varepsilon}}
\]

implies that \( a_\ell b_\ell → \infty \). It follows that \( \sum_{\ell ≤ A} (a_\ell b_\ell)^{-1/2} ≤ \varepsilon \) once \( T \) is large enough. We conclude that \( \sum_{\ell > 0} (a_\ell b_\ell)^{-1/2} = o(1) \), and hence that \( \mathcal{E} = o(T \log T) \) as desired.

**Second case.** Now consider the case that \( e^{2\pi \ell_{0}/\alpha} \) is rational for some \( \ell_{0} \). Write

\[
(8) \quad \alpha = \frac{2\pi \ell_{0}}{\log(p/q)}
\]

with co-prime \( p \) and \( q \) and \( |p| \) minimal. Let \( k \) be the maximal positive integer such that \( p/q = (r/s)^{k} \) with \( r, s \) co-prime. Then,

\[
\alpha = \frac{\ell_{0}}{k} \cdot \frac{2\pi}{\log(r/s)}.
\]

Let \( d = (\ell_{0}, k) \). Note that \( d = 1 \) since otherwise, we may replace \( \ell_{0} \) by \( \ell_{0}/d \) and \( p \) and \( q \) by \( p^{1/d} \) and \( q^{1/d} \) in (8) which contradicts the minimality condition on \( |p| \).

For each \( \ell \) divisible by \( \ell_{0} \) the integers \( a_\ell = p^{\ell_{0}/d} \) and \( b_\ell = q^{\ell_{0}/d} \) satisfy (7) because \( e^{2\pi \ell/\alpha} = (p/q)_{\ell_{0}}^{\ell/\ell_{0}} \). For the remaining integers \( \ell \) not divisible by \( \ell_{0} \), \( e^{2\pi \ell/\alpha} = (r/s)_{\ell_{0}}^{\ell/\ell_{0}} \) is irrational, since \( \ell_{0} | k \ell \) if and only if \( \ell_{0} | \ell \). We split \( \mathcal{E} \) accordingly

\[
\mathcal{E} = 4\text{Re} \sum_{\ell_{0} | \ell} H(\ell) + 4\text{Re} \sum_{\ell_{0} \not| \ell} H(\ell)
\]

The second sum is \( o(T \log T) \) as can be seen by repeating the same argument as in the first case. As for the first sum, we find that for each \( \ell \) divisible by \( \ell_{0} \),

\[
H(\ell) = 2\text{Re} \left( \frac{(p/q)^{\frac{\ell}{\ell_{0}}}}{\sqrt{pq}} \right)^{\ell/\ell_{0}} \hat{\phi}(0) T \log T + O \left( \frac{\ell \log pq}{(pq)^{\ell/2\ell_{0}}} \cdot T \right).
\]

Therefore

\[
\sum_{\ell_{0} \not| \ell} H(\ell) = 2\hat{\phi}(0) T \log T \cdot \sum_{\ell > 0} \left( \frac{(p/q)^{\frac{\ell}{\ell_{0}}}}{\sqrt{pq}} \right)^{\ell} + O(T)
\]

\[
= \hat{\phi}(0) T \log T \cdot \frac{2 \cos(b \log(p/q)) \sqrt{pq} - 2}{pq + 1 - 2 \sqrt{pq} \cos(b \log(p/q))} + O(T)
\]

giving the desired estimate for \( \mathcal{E} \).

**3. Proof of Theorem 3**

Recall that in the notation of Proposition 1,

\[
F(a_\ell, b_\ell, t) := \sum_{r \geq 1} \frac{1}{r} \sum_{h,k \in T^\theta} b(k) b(h) \sum_{m,n \geq 1 \atop mk = a_\ell r, nh = b_\ell} W \left( \frac{2\pi mn}{\alpha t + \beta} \right)
\]

The lemma below, provides a bound for \( F \) when the coefficients \( b(n) \) are the coefficients of the mollifiers \( M_\theta(s) \), that is

\[
b(n) = \mu(n) \cdot \left( 1 - \frac{\log n}{\log T^\theta} \right)
\]
and \( b(n) = 0 \) for \( n > T^\theta \).

**Lemma 1.** For any \( a_\ell, b_\ell \in \mathbb{N} \) with \((a_\ell, b_\ell) = 1\) and \( a_\ell b_\ell > 1\), uniformly in \( T \leq t \leq 2T\), we have that

\[
F(a_\ell, b_\ell, t) \ll (a_\ell b_\ell)^{c} \cdot T(\log T)^{-1+\varepsilon}.
\]

**Proof.** For notational ease, let \( N = T^\theta \). We first express the conditions in the sum above in terms of Mellin transforms. To be specific since

\[
W(x) = \frac{1}{2\pi i} \int_{(e)} x^{-w} G(w) \frac{dw}{w}
\]

with \( G(w) \) rapidly decaying along vertical lines, and such that \( G(w) = G(-w) \), \( G(0) = 1 \), we have

\[
S = \frac{1}{2\pi i} \int_{(2)} \sum_{m,n\geq 1} \sum_{h,k\leq N} b(h)b(k) \sum_{r \geq 1} \frac{1}{r} \left(\frac{\alpha t + \beta}{2\pi mn}\right)^w G(w) \frac{dw}{w}
\]

\[
= \left(\frac{1}{2\pi i}\right)^3 \int_{(2)} \int_{(2)} \int_{(2)} \sum_{m,n \geq 1} \frac{1}{(mn)^w} \sum_{h,k} \frac{\mu(h)\mu(k)}{h^{z_1}k^{z_2}} \sum_{r \geq 1} \frac{1}{r} \left(\frac{\alpha t + \beta}{2\pi}\right)^w G(w) \frac{dw}{w} N^{z_1} dz_1 N^{z_2} dz_2 \log N^{\frac{z_1}{2}} \log N^{\frac{z_2}{2}}.
\]

The sum over \( m, n, h, k \) and \( r \) inside the integral may be factored into an Euler product as

\[
\sum_{r \geq 1} \frac{1}{r} \left( \frac{\mu(h)\mu(k)}{h^{z_1}k^{z_2}} \right) \left( \frac{\mu(h)}{m^{z_1}} \right)
\]

\[
= \prod_p \left( 1 + \frac{1}{p} \left(\frac{1}{p^{z_1} - 1}\right) \left(\frac{1}{p^{z_2} - 1}\right) \right) F(a_\ell b_\ell, w, z_1, z_2) \eta(w, z_1, z_2).
\]

Here \( \eta(w, z_1, z_2) \) is an Euler product which is absolutely convergent in the region delimited by \( \text{Re } w, \text{Re } z_1, \text{Re } z_2 > -1/2 \) and we define

\[
F(a_\ell b_\ell, w, z_1, z_2) = \prod_{p \nmid |a_\ell} \frac{1}{p^{(j-1)w}} \left(\frac{1}{p^w} - \frac{1}{p^{z_1}}\right) \left( 1 + \frac{1}{p^{1+w}} \left(\frac{1}{p^w} - \frac{1}{p^{z_2}}\right)\right)
\]

\[
\prod_{p \nmid |b_\ell} \frac{1}{p^{(j-1)w}} \left(\frac{1}{p^w} - \frac{1}{p^{z_2}}\right) \left( 1 + \frac{1}{p^{1+w}} \left(\frac{1}{p^w} - \frac{1}{p^{z_1}}\right)\right)
\]

\[
\prod_{p \mid a_\ell b_\ell} \left( 1 + \frac{1}{p} \left(\frac{1}{p^w} - \frac{1}{p^{z_2}}\right) \left(\frac{1}{p^w} - \frac{1}{p^{z_1}}\right)\right)^{-1}.
\]

Further, we may write

\[
\prod_p \left( 1 + \frac{1}{p} \left(\frac{1}{p^w} - \frac{1}{p^{z_2}}\right) \left(\frac{1}{p^w} - \frac{1}{p^{z_1}}\right)\right) \eta(w, z_1, z_2) = \frac{\zeta(1+2w)\zeta(1+z_1+z_2)}{\zeta(1+w+z_1)\zeta(1+w+z_2)} \tilde{\eta}(w, z_1, z_2),
\]

where \( \tilde{\eta}(w, z_1, z_2) \) is an Euler product.
where \( \tilde{\eta} \) denotes an Euler product which is absolutely convergent in the region delimited by \( \operatorname{Re} w, \operatorname{Re} z_1, \operatorname{Re} z_2 > -1/2 \) and does not depend on \( a_t \) or \( b_t \). Thus,

\[
S = \left( \frac{1}{2\pi i} \right)^3 \left( \int_{(2)} \right)^3 \frac{\zeta(1 + 2w)\zeta(1 + z_1 + z_2)}{\zeta(1 + w + z_1)\zeta(1 + w + z_2)} \tilde{\eta}(w, z_1, z_2) F(a_t b_t, w, z_1, z_2) \left( \frac{\alpha t + \beta}{2\pi} \right)^w G(w) \frac{dw}{w} \frac{N^{z_1} d z_1}{\log N z_1^2} \frac{N^{z_2} d z_2}{\log N z_2^2}
\]

and shifting contours to \( \operatorname{Re} w = -\delta, \operatorname{Re} z_1 = \operatorname{Re} z_2 = \delta + \delta^2 \) gives, since \( \alpha t + \beta \asymp T \),

\[
S = I_1 + I_2 + I_3 + O \left( \frac{(a_t b_t)^{\delta N^{2z+2\delta^2}}}{T^\delta} \right)
\]

with \( I_1, I_2, I_3 \) specified below. Since \( N < T^{1/2-\varepsilon} \) the error term is \( \ll (a_t b_t)^{\varepsilon T^{-\varepsilon}} \) provided that \( \delta \) is chosen small enough. Writing

\[
H(z_1, z_2) = \frac{\zeta(1 + z_1 + z_2)}{\zeta(1 + z_1)\zeta(1 + z_2)} \tilde{\eta}(0, z_1, z_2) F(a_t b_t, 0, z_1, z_2)
\]

we have

\[
I_1 = \frac{\log(\alpha t + \beta)}{2} \frac{1}{(2\pi i)^2} \int_{(1/4)} \int_{(1/4)} H(z_1, z_2) \cdot \frac{N^{z_1} d z_1}{\log N z_1^2} \frac{N^{z_2} d z_2}{\log N z_2^2},
\]

\[
I_2 = -\frac{1}{2} \frac{1}{(2\pi i)^2} \int_{(1/4)} \int_{(1/4)} \left( \frac{\zeta'}{\zeta}(1 + z_1) + \frac{\zeta'}{\zeta}(1 + z_2) \right) \cdot H(z_1, z_2) \cdot \frac{N^{z_1} d z_1}{\log N z_1^2} \frac{N^{z_2} d z_2}{\log N z_2^2},
\]

and

\[
I_3 = \frac{1}{2} \frac{1}{(2\pi i)^2} \int_{(1/4)} \int_{(1/4)} \left( \frac{d}{dw} \tilde{\eta}(w, z_1, z_2) F(a_t b_t, w, z_1, z_2) \right)_{w=0} \cdot H(z_1, z_2) \cdot \frac{N^{z_1} d z_1}{\log N z_1^2} \frac{N^{z_2} d z_2}{\log N z_2^2},
\]

Bounding the integrals is now a standard exercise. As they can be bounded using the exact same procedure, we will focus our attention to \( I_1 \) (note in particular, that \( I_3 \) is smaller by a factor of \( \log T \) compared with the other integrals).

For ease of notation, write \( G(z_1, z_2) = \tilde{\eta}(0, z_1, z_2) F(a_t b_t, 0, z_1, z_2) \). Then

\[
I_1 = \frac{\log(\alpha t + \beta)}{2} \sum_{n \leq N} \frac{1}{(2\pi i)^2} \int_{(1/\log N)} \int_{(1/\log N)} \zeta(1 + z_1)^{-1} \zeta(1 + z_2)^{-1} G(z_1, z_2) \cdot \frac{N^{z_1+z_2}}{n} \frac{d z_1}{\log N z_1^2} \frac{d z_2}{\log N z_2^2},
\]

Let \( M = \exp(B(\log \log T)^2) \) for \( B \) a parameter to be determined shortly. We split the sum in \( n \) above to \( n \leq N/M \) and \( n > N/M \).

If \( n > N/M \), then shift both contours to the line with real-part \( (\log M)^{-1} \) and bound the integrals trivially. The contribution of terms with \( n > N/M \) is

\[
\ll \log T (\log M)^{\delta} (\log N)^{-2} (a_t b_t)^{\varepsilon} \ll \frac{(a_t b_t)^{\varepsilon}}{(\log T)^{1-\varepsilon}}.
\]

Now, for the terms with \( n \leq N/M \), first truncate both contours at height \( \log^4 T \) with an error \( \ll (a_t b_t)^{\varepsilon} (\log T)^{-1} \). Since \( a_t b_t > 1 \), we assume without loss of generality that \( a_t > 1 \). This in turn implies that \( F(a_t b_t, 0, 0, z_2) = 0 \), so that the integrand is holomorphic
at \( z_1 = 0 \). From the classical zero free region for \( \zeta(s) \), there exists a constant \( c > 0 \) such that \( (\zeta(1 + z_1))^{-1} < \log(|z_1| + 1) \) for \( \text{Re} \ z_1 \geq -c(\log \log T)^{-1} \) and \( |\text{Im} \ z_1| \leq \log^4 T \). We now shift the integral in \( z_1 \) to \( \text{Re} \ z_1 = -c(\log \log T)^{-1} \) with an error \( \ll (a_\ell b_\ell)^\varepsilon (\log T)^{-1} \) and bound the remaining integral trivially by

\[
M^{\frac{1}{1-2\varepsilon}} \log T \cdot (\log \log T)^2 (a_\ell b_\ell)^\varepsilon \ll \exp(-cB \log \log T)(\log T)^{1+\varepsilon}(a_\ell b_\ell)^\varepsilon.
\]

The result follows upon picking \( B = \frac{2}{c} \).

**Proof of Theorem 3.** Let \( B(s) = M_\theta(s) \) with \( 0 < \theta < \frac{1}{2} \). Inserting the bound in Lemma 1 into Proposition 1 we obtain

\[
E \ll \frac{T}{(\log T)^{1-\varepsilon}} \sum_{\ell > 0} \frac{1}{(a_\ell b_\ell)^{1/2-\varepsilon}} + O(T^{1-\varepsilon}).
\]

The sum over \( \ell > 0 \) is rapidly convergent: Because of (5) we have \( a_\ell \asymp b_\ell e^{2\pi \ell / \alpha} \) and therefore \( a_\ell b_\ell \gg e^{2\pi \ell / \alpha} \). It follows that the sum over \( \ell > 0 \) contributes \( O(1) \) and we obtain \( E \ll T(\log T)^{-1+\varepsilon} \) as desired. \( \square \)

### 4. Proof of Theorem 4

Recall that

\[
M_\theta(s) := \sum_{n \geq 1} \frac{b(n)}{n^s}
\]

with coefficients

\[
b(n) := \mu(n) \cdot \left(1 - \frac{\log n}{\log T^\theta}\right),
\]

for \( n \leq T^\theta \) and \( b(n) = 0 \) otherwise. Define the mollified first moment as

\[
I := \sum_\ell \zeta(\frac{1}{2} + i(\alpha \ell + \beta)) \cdot M_\theta(\frac{1}{2} + i(\alpha \ell + \beta)) \phi\left(\frac{\ell}{T}\right),
\]

and recall that

\[
J := \sum_\ell |\zeta(\frac{1}{2} + i(\alpha \ell + \beta)) M_\theta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi\left(\frac{\ell}{T}\right).
\]

By Cauchy-Schwarz and \( 0 \leq \phi \leq 1 \), we have

\[
|I| \leq (P_{\alpha,\beta}(T) \cdot T)^{1/2} \cdot J^{1/2}.
\]

Then our Theorem 4 follows from the following Proposition 3 and Theorem 3.

**Proposition 3.** Let \( \alpha > 0, \beta \) be real numbers. With \( I \) as defined in (9), and for \( T \) large,

\[
|I| = T \hat{\phi}(0) + O\left(\frac{T}{\log T}\right).
\]

**Proof.** Uniformly in \( 0 \leq t \leq 2aT \) we have,

\[
\zeta(\frac{1}{2} + it) = \sum_{n \leq 2aT} \frac{1}{n^{1/2+it}} + O\left(\frac{1}{T^{1/2}}\right),
\]
Since in addition $|M(\frac{1}{2} + it)| \ll T^{\theta/2 + \epsilon}$ for all $t$, we get

$$I = \sum_{\ell} \sum_{n \leq 2\alpha T} \frac{1}{n^{1/2 + i(\alpha \ell + \beta)}} \cdot M(\frac{1}{2} + i(\alpha \ell + \beta)) \phi \left( \frac{\ell}{T} \right) + O(T^{\theta/2 + 1/2 + \epsilon})$$

$$= \sum_{m \leq T^\theta} \frac{b(m)}{\sqrt{m}} \sum_{n \leq 2\alpha T} \frac{1}{\sqrt{n}} \cdot (mn)^{-i\beta} \sum_{\ell} (mn)^{-ia\ell} \phi \left( \frac{\ell}{T} \right) + O(T^{3/4})$$

$$= \sum_{m \leq T^\theta} \frac{b(m)}{\sqrt{m}} \sum_{n \leq 2\alpha T} \frac{1}{\sqrt{n}} \cdot (mn)^{-i\beta} \sum_{\ell} T^{\hat{\phi}} \left( T \left( \frac{\alpha \log(mn)}{2\pi} - \ell \right) \right) + O(T^{3/4})$$

by Poisson summation applied to the sum over $\ell$.

Note that $\hat{\phi}(Te) \ll_A T^{-A}$ for any $|c| > T^{-1+\epsilon}$, which is an immediate result of $\hat{\phi}$ being a member of the Schwarz class. Hence, the sum above may be restricted to $|\ell| \leq \frac{\alpha}{2\pi} \cdot \log(2aT^{1+\theta}) + O(T^{-\epsilon})$. The terms with $\ell = 0$ contributes a main term of $T^{\hat{\phi}}(0)$ when $mn = 1$, and the terms with other values of $mn$ contributes $O(T^{-A})$.

Now consider $\ell \neq 0$. Terms with $|a \log(mn) - \ell| > T^{-1}$ contribute $O(T^{-A})$. Otherwise, suppose that

$$\alpha = \frac{2\pi \ell}{\log n_0} + O(T^{-1})$$

for some integer $n_0 > 1$, and fix such a $n_0$ The term $mn = n_0$ contributes

$$\frac{T}{n_0^{1/2 + i\beta}} \sum_{m|n_0} b(m) \hat{\phi} \left( T(\alpha \log(n_0) - \ell) \right)$$

for $T$ large. This term is bounded by

$$\ll_a T \log T \cdot \frac{d(n_0) \log n_0}{\sqrt{n_0}}$$

because $b(m) = \mu(m) + O(\log m / \log T)$ for all $m$, and thus,

$$\sum_{m|n_0} b(m) \ll \frac{d(n_0) \log n_0}{\log T}$$

For a fixed $\ell$, the number of $n_0$ satifying (10) is bounded by $n_0 T^{-1+\epsilon} + 1$. Thus the total contribution of all the terms is

$$\ll T n_0^{1/2 + \epsilon} \cdot T^\epsilon + T d(n_0) \log n_0 \sqrt{n_0} \log T \ll T^{3/4 + \epsilon} + T \frac{d(n_0) \log n_0}{\sqrt{n_0} \log T}.$$  

We sum this over all the $|\ell| \leq \log(2aT^{1+\theta})$. Such a short sum does not affect the size of the first term above. As for the second term, since $n_0 \asymp e^{2\pi a \ell}$, the sum over $\ell \neq 0$ is bounded by

$$\frac{T}{\log T} \sum_{|\ell| > 0} e^{\alpha \pi |\ell| (1-\epsilon)} \ll \frac{T}{\log T}.$$  

From this we have that

$$I = \hat{\phi}(0)T + O \left( \frac{T}{\log T} \right)$$

□
Proof of Theorem 1. Appealing to a result of Balasubramanian, Conrey and Heath-Brown [1] to compute
\[ R_2^j(M) \left( 1 + \frac{i}{T} \right) \] and Proposition 3, we obtain
\[ \hat{\phi}(0)T(1 + o(1)) \leq (P_{\alpha,\beta}(T) \cdot T)^{1/2} \cdot (T \cdot \left( \frac{1}{T} + 1 + o(1) \right))^{1/2} \]
Hence,
\[ P_{\alpha,\beta}(T) \geq \frac{\theta}{\theta + 1} \hat{\phi}(0) + o(1) \]
for all \( 0 < \theta < \frac{1}{2} \). Now we set \( \phi(t) = 1 \) for \( t \in [1 + \epsilon, 2 - \epsilon] \) so that \( \hat{\phi}(0) \geq 1 - 2\epsilon \). Letting \( \theta \to \frac{1}{2}^- \) and \( \epsilon \to 0 \), we obtain the claim. \( \square \)

In order to prove the Corollary we need the lemma below.

Lemma 1. We have,
\[ \sum_{\ell} |M_\theta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi\left( \frac{\ell}{T} \right) \ll T \log T \]

Proof. Using Proposition 2 we find that the above second moment is equal to
\[ \int_{\mathbb{R}} |M_\theta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi\left( \frac{\ell}{T} \right) dt + O\left( T \hat{\phi}(0) \sum_{\ell > 0} \frac{1}{\sqrt{a_\ell} b_\ell} \cdot |F'(a_\ell, b_\ell)| \right) \]
where \( a_\ell, b_\ell \) denotes for each \( \ell > 0 \) the unique (if it exists!) couple of co-prime integers such that \( a_\ell b_\ell > 1 \), \( b_\ell < T^{1/2 - \epsilon} e^{-\pi \ell/\alpha} \) and
\[ \left| \frac{a_\ell}{b_\ell} - e^{2\pi i/\alpha} \right| \leq \frac{e^{2\pi i/\alpha}}{T^{1-\epsilon}} \]
and where
\[ F'(a_\ell, b_\ell) = \sum_{r \leq T} b(a_r) b(b_r) \ll \log T \]
since the coefficients of \( M_\theta \) are bounded by 1 in absolute value. Since \( \int_{\mathbb{R}} |M_\theta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi(t/T) dt \ll T \log T \) the claim follows. \( \square \)

Proof of the Corollary. Following [4] let \( \mathcal{H}_0 \) be the set of integers \( T \leq \ell \leq 2T \) at which,
\[ |\zeta(1/2 + i(\alpha \ell + \beta))| \leq \varepsilon (\log \ell)^{-1/2} \]
and let \( \mathcal{H}_1 \) be the set of integers \( \ell \) at which the reverse inequality holds. Notice that,
\[ C_0 := \left| \sum_{\ell \in \mathcal{H}_0} \zeta(1/2 + i(\alpha \ell + \beta)) M_\theta(1/2 + i(\alpha \ell + \beta)) \phi\left( \frac{\ell}{T} \right) \right| \]
\[ \leq \varepsilon (\log T)^{1/2} T^{1/2} \left( \sum_{\ell} |M_\theta(1/2 + i(\alpha \ell + \beta))|^2 \phi\left( \frac{\ell}{T} \right) \right)^{1/2} \leq C \varepsilon T \hat{\phi}(0) \]
for some absolute constant \( C > 0 \). Hence by Proposition 3 and the Triangle Inequality,
\[ C_1 := \left| \sum_{\ell \in \mathcal{H}_1} \zeta(1/2 + i(\alpha \ell + \beta)) M_\theta(1/2 + i(\alpha \ell + \beta)) \phi\left( \frac{\ell}{T} \right) \right| \geq (1 - C \varepsilon) \hat{\phi}(0) T \]
while by Cauchy’s inequality,
\[
C_1 \leq \left( \text{Card}(\mathcal{H}_1) \right)^{1/2} \cdot \left( \sum_{\ell} |\zeta(\frac{1}{2} + i(\alpha \ell + \beta))M_\theta(\frac{1}{2} + i(\alpha \ell + \beta))|^2 \phi(\frac{\ell}{T}) \right)^{1/2}
\]
As in the proof of Theorem 1, by Theorem 5 and a result of Balasubramanian, Conrey and Heath-Brown, the mollified second moment is \( \leq T \cdot (1 + 1/\theta + o(1)) \) as \( T \to \infty \). Thus
\[
|\mathcal{H}_1| \geq \hat{\phi}(0) \frac{1 - C\varepsilon}{1 + 1/\theta} T
\]
Taking \( \theta \to \frac{1}{2}^- \) and letting \( \phi(t) = 1 \) on \( t \in [1 + \varepsilon; 2 - \varepsilon] \), so that \( \hat{\phi}(0) \geq 1 - 2\varepsilon \) we obtain the claim on taking \( \varepsilon \to 0 \). \( \Box \)

5. LARGE AND SMALL VALUES: PROOF OF THEOREM 5

Let \( 0 \leq \phi \leq 1 \) be a smooth function, compactly supported in \([1, 2]\). Let
\[
A(s) = \sum_{n \leq T} \frac{1}{n^s}
\]
and let
\[
B(s) = \sum_{n \leq N} b(n)n^{-s}
\]
be an arbitrary Dirichlet polynomial of length \( N \). Consider,
\[
\mathcal{R} := \frac{\sum_{\ell} A\left(\frac{1}{2} + i(\alpha \ell + \beta)\right)|B\left(\frac{1}{2} + i(\alpha \ell + \beta)\right)|^2 \phi\left(\frac{\ell}{T}\right)}{\sum_{\ell} |B\left(\frac{1}{2} + i(\alpha \ell + \beta)\right)|^2 \phi\left(\frac{\ell}{T}\right)}.
\]
Following Soundararajan [12], and since \( \zeta\left(\frac{1}{2} + it\right) = A\left(\frac{1}{2} + it\right) + O(t^{-1/2}) \),
\[
\max_{T \leq \ell \leq 2T} |\zeta\left(\frac{1}{2} + i(\alpha \ell + \beta)\right)| + O(T^{-1/2}) \geq |\mathcal{R}| \geq \min_{T \leq \ell \leq 2T} |\zeta\left(\frac{1}{2} + i(\alpha \ell + \beta)\right)| + O(T^{-1/2})
\]
Thus, to produce large and small values of \( \zeta \) at discrete points \( \frac{1}{2} + i(\alpha \ell + b) \) it suffices to choose a Dirichlet polynomial \( B \) that respectively maximizes/minimizes the ratio \( \mathcal{R} \). Fix \( \varepsilon > 0 \). Consider the set \( S_1 \) of tuples \( (a_\ell, b_\ell) \), with \( \ell \leq 2\log T \), such that
\[
|a_\ell b_\ell| > 1 \quad \text{and both} \quad a_\ell, b_\ell \quad \text{are less than} \quad T^{1/2-\varepsilon}.
\]
In particular for each \( \ell \) there is at most one such tuple so \( |S_1| \leq 2\log T \). From each tuple in \( S_1 \) we pick one prime divisor of \( a_\ell \) and one prime divisor of \( b_\ell \) and put them into a set we call \( S \).

We define our resonator coefficients \( r(n) \) by setting \( L = \sqrt{\log N \log \log N} \) and
\[
r(p) = \frac{L}{\sqrt{\log p}}
\]
when \( p \in ([L^2; \exp((\log L)^2)]) \) and \( p \notin S \). In the remaining cases we let \( r(p) = 0 \). Note in particular that the resonator coefficients change with \( T \).

We then choose \( b(n) = \sqrt{\pi r(n)} \) or \( b(n) = \mu(n)\sqrt{\pi r(n)} \) depending on whether we want to maximize or minimize the ratio \( \mathcal{R} \). For either choice of coefficients we have the following lemma.
Lemma 2. Write \( D(s) = \sum_{n \leq T} a(n) n^{-s} \) with the coefficients \( a(n) \ll 1 \). If \( N = T^{1/2-\delta} \) with \( \delta > 10\varepsilon \), then,

\[
\sum_{\ell} D(\frac{1}{2} + i(\alpha + \beta)) |B(\frac{1}{2} + i(\alpha + \beta))|^2 \phi(\frac{\ell}{T}) = \int_{\mathbb{R}} D(\frac{1}{2} + i(\alpha + \beta)) |B(\frac{1}{2} + i(\alpha + \beta))|^2 \phi(\frac{\ell}{T}) \, dt + O(T^{1+(1-3\delta)/2+4\varepsilon})
\]

Proof. By Poisson summation we have,

\[
\sum_{\ell} D(\frac{1}{2} + i(\alpha + \beta)) |B(\frac{1}{2} + i(\alpha + \beta))|^2 \phi(\frac{\ell}{T}) = T \sum_{\ell} \sum_{\substack{m,n \leq N \\ h \leq T}} \frac{b(m)b(n)a(h)}{\sqrt{mnh}} \left( \frac{m}{nh} \right)^{i\beta} \hat{\phi} \left( T \left( \frac{\alpha \log \frac{m}{nh}}{2\pi} - \ell \right) \right)
\]

The term \( \ell = 0 \) contributes the main term (the continuous average). It remains to bound the remaining terms \( \ell \neq 0 \). Since \( \hat{\phi}(x) \ll (1 + |x|)^{-A} \) the only surviving terms are those for which,

\[
\left| \frac{\alpha \log \frac{m}{nh}}{2\pi} - \ell \right| \leq \frac{1}{T^{1-\varepsilon}}
\]

which in particular implies that \( \ell \leq 2 \log T \). We split our sum into two ranges, \( nh < T^{1/2-\varepsilon} \) and \( nh > T^{1/2-\varepsilon} \).

First range. In the first range, for \((m, nh) = 1\), the real numbers \( \log m/(nh) \) are spaced by at least \( T^{-1+\varepsilon} \) apart. Among all co-prime tuples with both \( a_\ell, b_\ell \) less than \( T^{1/2-\varepsilon} \) there is at most one tuple satisfying,

\[
\left| \frac{\alpha \log \frac{a_\ell}{b_\ell}}{2\pi} - \ell \right| \leq \frac{1}{T^{1-\varepsilon}}
\]

Grouping the terms \( m, n, h \) according to \( m = a_\ell r \) and \( nh = b_\ell r \), we re-write the first sum sum over the range \( nh \leq T^{1/2-\varepsilon} \) as follows,

\[
T \sum_{\ell \neq 0} \frac{1}{\sqrt{a_\ell b_\ell}} \sum_r \frac{1}{r} \sum_{\substack{m,n \leq N \\ nh \leq T^{1/2-\varepsilon} \\ m = a_\ell r \\ nh = b_\ell r}} b(m)b(n)a(h) \left( \frac{m}{nh} \right)^{i\beta} \hat{\phi} \left( T \left( \frac{\alpha \log \frac{m}{nh}}{2\pi} - \ell \right) \right)
\]

However by our choice of \( r \) we have \( b(a_\ell) = 0 \), hence by multiplicativity \( b(m) = 0 \), and it follows that the above sum is zero.

Second range. We now examine the second range \( nh > T^{1/2-\varepsilon} \). The condition \( nh > T^{1/2-\varepsilon} \) and \( n \leq T^{1/2-\delta} \) imply that \( h > T^{\delta-\varepsilon} \). For fixed \( m, n \) we see that there are at most \( T^{\varepsilon} \) values of \( h \) such that,

\[
\left| \frac{\alpha \log \frac{m}{nh}}{2\pi} - \ell \right| \leq \frac{1}{T^{1-\varepsilon}}
\]
Putting this together we have the following bound for the sum over $nh > T^{1/2-\varepsilon}$,

$$
T \left| \sum_{\ell \neq 0} \sum_{m, n \leq N, nh \leq T^{1/2-\varepsilon}} \frac{b(m)b(n)a(h)}{\sqrt{mnh}} \left( \frac{m}{nh} \right)^{i\beta} \phi \left( T \left( \frac{\alpha \log \frac{m}{nh}}{2\pi} - \ell \right) \right) \right| 
\ll T \sum_{|\ell| \leq 2 \log T} \sum_{m, n \leq N} \frac{|b(m)b(n)|}{\sqrt{mn}} \cdot T^{-\delta/2+\varepsilon}T^\varepsilon
$$

$$
\ll T^{1-\delta/2+3\varepsilon} \cdot N \sum_{n \leq N} \frac{|b(m)|^2}{n}
$$

Then

$$
\sum_{n \leq N} \frac{|b(m)|^2}{n} \leq \prod_{p \geq L^2} \left( 1 + \frac{L^2}{p \log^2 p} \right) \ll T^\varepsilon
$$

because $L^2 \sum_{p > L^2} p^{-1}(\log p)^{-2} \ll \log N / \log \log N = o(\log T)$. Therefore the sum in the second range is bounded by $T^{1-\delta/2+4\varepsilon}N = T^{1+(1-3\delta)/2+4\varepsilon}$. \( \square \)

In the above lemma we take $\delta = 1/3 + 4\varepsilon$, so that $N = T^{1/6-4\varepsilon}$ and the error term is negligible (that is $\ll T^{1-\varepsilon}$). Setting consecutively $D(s) = A(s)$ and $D(s) = 1$ we get,

$$
\mathcal{R} = \frac{\int_R A(\frac{1}{2} + i(\alpha t + \beta))|B(\frac{1}{2} + i(\alpha t + \beta))|2\phi(\frac{t}{T})dt}{\int_R |B(\frac{1}{2} + i(\alpha t + \beta))|2\phi(\frac{t}{T})dt} + o(1)
$$

plus a negligible error term. The above ratio was already worked out by Soundararajan in [12] (see Theorem 2.1). Proceeding in the same way, we obtain that the above ratio is equal to,

$$
\mathcal{R} = (1 + o(1)) \prod_p \left( 1 + \frac{b(p)}{p} \right)
$$

Suppose that we were interested in small values, in which case $b(n) = \mu(n) \sqrt{n}r(n)$. Then,

$$
\mathcal{R} = (1 + o(1)) \prod_{p \notin S} \left( 1 - \frac{L}{p \log p} \right)
$$

Since

$$
\sum_{p \in S} \frac{L}{p \log p} = \sum_{L^2 \leq p \leq L^2 + 2\log T} \frac{L}{p \log p} = o \left( \sqrt{\frac{\log N}{\log \log N}} \right)
$$

we find that

$$
\mathcal{R} = \exp \left( - (1 + o(1)) \sqrt{\frac{\log N}{\log \log N}} \right)
$$

Recall that $N = T^{1/6-4\varepsilon}$. Letting $\varepsilon \to 0$ we obtain the claim since $\mathcal{R} \geq \min_{T \leq t \leq 2T} |\zeta(\frac{1}{2} + i(\alpha t + \beta))| + O(T^{-1/2})$. The large value estimate for the maximum of $\zeta(\frac{1}{2} + i(\alpha t + \beta))$ is obtained in exactly the same way by choosing $r(n) = \sqrt{n}r(n)$ instead.
6. Proof of the technical Proposition 1

Let $G(\cdot)$ be an entire function with rapid decay along vertical lines, that is $G(x+iy) \ll |y|^{-A}$ for any fixed $x$ and $A > 0$. Suppose also that $G(-w) = G(w)$, $G(0) = 1$ and $G(\bar{w}) = G(\bar{w})$. An example of such a function is $G(w) = e^{w^2}$. For such a function $G(w)$ we define a smooth function

$$W(x) := \frac{1}{2\pi} \int_{(\varepsilon)} x^{-w} G(w) \cdot \frac{dw}{w}.$$  

Notice that $W$ is real.

**Lemma 3** (Approximate function equation). We have, for $T < t < 2T$,

$$|\zeta(\frac{1}{2} + it)|^2 = 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \cdot \left( \frac{m}{n} \right)^{it} W(\frac{2\pi mn}{t}) + O(T^{-2/3}).$$

**Remark.** Of course we could work with the usual smoothing $V$ involving the Gamma factors on the Mellin transform side. We believe the smoothing $W(2\pi mn/t)$ to be (slightly) more transparent.

**Proof.** By a standard argument (see [5], Theorem 5.3),

$$(11) \quad |\zeta(\frac{1}{2} + it)|^2 = \frac{2}{2\pi i} \int_{(\varepsilon)} \zeta(\frac{1}{2} + it + w)\zeta(\frac{1}{2} - it + w)\pi^{-w}G(w) \cdot g_t(w) \frac{dw}{w}.$$  

with $g_t(w) = \Gamma(\frac{1}{4} + \frac{it}{2} + \frac{w}{2})\Gamma(\frac{1}{4} - \frac{it}{2} + \frac{w}{2})/\left( \Gamma(\frac{1}{4} + \frac{w}{2})\Gamma(\frac{1}{4} - \frac{w}{2}) \right)$ By Stirling’s formula $g_t(w) = (t/2)^w \cdot (1 + O((1 + |w|^2)/t))$ uniformly for $w$ lying in any fixed half-plane and $t$ large. Using Weyl’s subconvexity bound, on the line $\text{Re } w = \varepsilon$ we have $\zeta(\frac{1}{2} + it + w) \zeta(\frac{1}{2} - it + w) \ll |t|^{1/3} + |w|^{1/3}$. Therefore, the error term $O((1 + |w|^2)/t)$ in Stirling’s approximation contributes an error term of $O(T^{-2/3})$ in (11). Thus

$$|\zeta(\frac{1}{2} + it)|^2 = \frac{2}{2\pi i} \int_{(\varepsilon)} \zeta(\frac{1}{2} + it + w)\zeta(\frac{1}{2} - it + w) \cdot \left( \frac{t}{2\pi} \right)^w G(w) \cdot \frac{dw}{w} + O(T^{-2/3}).$$

Shifting the line of integration to $\text{Re } w = 1 + \varepsilon$ we collect a pole at $w = \frac{1}{2} \pm it$, it is negligible because $G(\frac{1}{2} \pm it) \ll |t|^{-A}$. Expanding $\zeta(\frac{1}{2} + it + w)\zeta(\frac{1}{2} - it + w)$ into a Dirichlet series on the line $\text{Re } w = 1 + \varepsilon$ we conclude that

$$|\zeta(\frac{1}{2} + it)|^2 = 2 \sum_{m,n \geq 1} \frac{1}{\sqrt{mn}} \cdot \left( \frac{m}{n} \right)^{it} W\left( \frac{2\pi mn}{t} \right) + O(T^{-2/3}).$$

Notice that $W(x) = O_A(x^{-A})$ for $x > 1$. Since $T \leq t \leq 2T$ if $mn > T^{1+\varepsilon}$ then $2\pi mn/t \gg T^\varepsilon$. Therefore we can truncate the terms with $mn > T^{1+\varepsilon}$ making an error term of at most $\ll T^{-A}$. The claim follows. \[\square\]

Recall also that

$$B(s) := \sum_{n \leq T^\theta} \frac{b(n)}{n^s}$$
Therefore,

\[ J := \sum_{\ell \in \mathbb{Z}} |\zeta(\frac{1}{2} + i(\alpha\ell + \beta))B(\frac{1}{2} + i(\alpha\ell + \beta))|^2 \cdot \phi\left(\frac{\ell}{T}\right) \]

\[ = 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{\sqrt{hk}} \sum_{\ell \in \mathbb{Z}} \left( \frac{mh}{nk} \right)^{i(\alpha\ell + \beta)} W\left(\frac{2\pi mn}{\alpha\ell + \beta}\right) \phi\left(\frac{\ell}{T}\right) + O(T^{5/6+\varepsilon}) \]

(12) \[ = 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{\sqrt{hk}} \cdot \left( \frac{mh}{nk} \right)^{i\beta} \hat{f}_{m,n,T}\left(\frac{\alpha \log \frac{mh}{nk}}{2\pi} - \ell\right) + O(T^{5/6+\varepsilon}) \]

using Poisson summation in the sum over \( \ell \), with

\[ f_{m,n,T}(x) := W\left(\frac{2\pi mn}{\alpha x + \beta}\right) \cdot \phi\left(\frac{x}{T}\right) \]

6.1. The main term \( \ell = 0 \). Consider the sum with \( \ell = 0 \),

\[ 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{\sqrt{hk}} \cdot \left( \frac{mk}{nh} \right)^{i\beta} \hat{f}_{m,n,T}\left(\frac{\alpha \log \frac{mk}{nh}}{2\pi}\right) \]

\[ = 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{\sqrt{hk}} \cdot \int_{\mathbb{R}} \left( \frac{mk}{nh} \right)^{i(\alpha t + \beta)} W\left(\frac{2\pi mn}{\alpha t + \beta}\right) \phi\left(\frac{t}{T}\right) dt \]

Interchanging the sums and the integral, this becomes

\[ \int_{\mathbb{R}} |B(\frac{1}{2} + i(\alpha t + \beta))|^2 \cdot 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \cdot \left( \frac{m}{n} \right)^{i(\alpha t + \beta)} W\left(\frac{2\pi mn}{\alpha t + \beta}\right) \phi\left(\frac{t}{T}\right) dt \]

By the approximate functional equation,

\[ 2 \sum_{mn < T^{1+\varepsilon}} \frac{1}{\sqrt{mn}} \left( \frac{m}{n} \right)^{i(\alpha t + \beta)} W\left(\frac{2\pi mn}{\alpha t + \beta}\right) = |\zeta(\frac{1}{2} + i(\alpha t + \beta))|^2 + O(T^{-2/3}). \]

Therefore (13) is

\[ \int_{\mathbb{R}} |B(\frac{1}{2} + i(\alpha + \beta))\zeta(\frac{1}{2} + i(\alpha + \beta))|^2 \phi\left(\frac{t}{T}\right) dt + O(T^{1-\varepsilon}) \]

as desired.

6.2. The terms \( \ell \neq 0 \). Since

\[ \hat{f}_{m,n,T}\left(\frac{\alpha \log \frac{mh}{nk}}{2\pi} + \ell\right) = \hat{f}_{m,n,T}\left(\frac{\alpha \log \frac{mk}{nh}}{2\pi} - \ell\right) \]

we can re-write the sum over \( \ell \neq 0 \) so as to have \( \ell > 0 \) in the summation,

\[ J_0 = 2 \sum_{\ell > 0} \sum_{mn < T^{1+\varepsilon}} \frac{b(h)b(k)}{\sqrt{mnhk}} \cdot 2\Re \left( \left( \frac{mh}{nk} \right)^{i\beta} \hat{f}_{m,n,T}\left(\frac{\alpha \log \frac{mh}{nk}}{2\pi} - \ell\right) \right) \]

Differentiating repeatedly and using that \( W \) and all derivatives of \( W \) are Schwarz class, we find that for \( mn < T^{1+\varepsilon}, f^{(k)}_{m,n,T}(x) \ll T^{-k} \) for all \( x \). Therefore for any fixed \( A > 0 \),

\[ \hat{f}_{m,n,T}(x) \ll_A T\left(1 + T|x|\right)^{-A} \]
It follows that the only integers \( m, n, k, h, \ell \) that contribute to \( \mathcal{J}_0 \) are the \( m, n, k, h, \ell \) for which

\[
\left| \frac{\alpha}{2\pi} \cdot \log \frac{mh}{nk} - \ell \right| \leq T^{-1+\eta}.
\]

for some small, but arbitrary \( \eta > 0 \). This condition implies that

\[
(14) \quad \left| \frac{mh}{nk} - e^{2\pi \ell / \alpha} \right| \leq e^{2\pi \ell / \alpha} T^{-1+\eta}
\]

and we might as-well restrict the sum in \( \mathcal{J}_0 \) to those \( m, n, k, h, \ell \) satisfying this weaker, but friendlier, condition. Thus,

\[
(15) \quad \mathcal{J}_0 = 4\text{Re} \sum_{\ell > 0} \sum_{\substack{mn < T^{1+\varepsilon} \quad h,k \leq T^q \quad mnh < T \quad m,n,h,k \text{ satisfy (14)}}} \frac{b(h)b(k)}{\sqrt{mnhk}} \left( \frac{mk}{nh} \right)^{i\beta} \hat{f}_{m,n,T}(\alpha \log \frac{mk}{nh} - \ell) + O_A \left( \frac{1}{T^{1+\varepsilon}} \right).
\]

Now for a fixed \( \ell > 0 \), consider the inner sum over \( m, n, h, k \) in (15). We group together terms in the following way: If the integers \( m, n, k, h \) satisfy (14) then we let \( a_\ell = mk/(mk, nh) \) and \( b_\ell = nh/(mk, nh) \) so that \( (a_\ell, b_\ell) = 1 \). We group together all multiples of \( a_\ell, b_\ell \) of the form \( mk = a_\ell r \) and \( nh = b_\ell r \) with a common \( r > 0 \). The \( a_\ell, b_\ell \) are co-prime and satisfy

\[
(16) \quad \left| \frac{a_\ell}{b_\ell} - e^{2\pi \ell / \alpha} \right| < \frac{e^{2\pi \ell / \alpha}}{T^{1-\eta}}.
\]

This allows us to write

\[
(17) \quad \mathcal{J}_0 = 4\text{Re} \sum_{\ell > 0} \sum_{\alpha_\ell, b_\ell \geq 1} \sum_{\substack{mn < T^{1+\varepsilon} \quad h,k \leq T^q \quad mnh < T^{1+2\theta+\varepsilon} \quad m,n,h,k \text{ satisfy (16)}}} \frac{b(h)b(k)}{\sqrt{mnhk}} \left( \frac{mk}{nh} \right)^{i\beta} \hat{f}_{m,n,T}(\alpha \log \frac{a_\ell/b_\ell}{2\pi} - \ell).
\]

It is useful to have a bound for the size of \( b_\ell \) in the above sum. Equation (16) implies that \( a_\ell \gg b_\ell \cdot e^{2\pi \ell / \alpha} \). Furthermore, since \( mn < T^{1+\varepsilon} \), \( h,k \leq T^q \) and \( a_\ell r = mk \), \( b_\ell r = nh \) we have \( a_\ell \cdot b_\ell < mnkh < T^{1+2\theta+\varepsilon} \). Combining \( a_\ell \gg b_\ell \cdot e^{2\pi \ell / \alpha} \) and \( a_\ell b_\ell < T^{1+2\theta+\varepsilon} \) we obtain \( b_\ell < T^{1/2+\theta+\varepsilon} \cdot e^{-\pi \ell / \alpha} \).

Let

\[
K_\ell := T^{1/2-\eta} e^{-\pi \ell / \alpha} \\
M_\ell := T^{1/2+\theta+\varepsilon} e^{-\pi \ell / \alpha}
\]

We split the sum according to whether \( b_\ell < K_\ell \) or \( b_\ell > K_\ell \), getting

\[
\mathcal{J}_0 = 4\text{Re} \sum_{\ell > 0} \sum_{\substack{b_\ell < M_\ell \quad \alpha_\ell \geq 1 \quad (a_\ell, b_\ell) = 1 \quad \text{satisfy (16)}}} \frac{(a_\ell/b_\ell)^{i\beta}}{\sqrt{a_\ell b_\ell}} \sum_{r > 1} \frac{1}{r} \sum_{\substack{mn < T^{1+\varepsilon} \quad h,k \leq T^q \quad mnh < T^{1+2\theta+\varepsilon} \quad m,n,h,k \text{ satisfy (16)}}} \hat{f}_{m,n,T}(\alpha \log \frac{a_\ell/b_\ell}{2\pi} - \ell) = 4\text{Re} \left( S_1 + S_2 \right)
\]

where \( S_1 \) is the sum over \( b_\ell \leq K_\ell \) and \( S_2 \) is the corresponding sum over \( M_\ell > b_\ell > K_\ell \). To finish the proof of the Proposition it remains to evaluate \( S_1 \) and \( S_2 \). The sum \( S_1 \) can give a main term contribution in the context of Theorem 2 depending on the Diophantine properties of \( a \), while bounding \( S_1 \) as an error term in the context of Theorem 4 is relatively subtle. In contrast, \( S_2 \) is always negligible.

We first furnish the following expression for \( S_1 \).
Lemma 4. For each $\ell > 0$ there is at most one tuple of co-prime integers $(a_\ell, b_\ell)$ such that $a_\ell b_\ell > 1$, $b_\ell < K_\ell = T^{1/2-\eta} e^{-\pi \ell / \alpha}$ and such that

\begin{equation}
\left| \frac{a_\ell}{b_\ell} - e^{2\pi t / \alpha} \right| \leq \frac{e^{2\pi t / \alpha}}{T^{1-\eta}}.
\end{equation}

We denote by $\sum_\ell^*$ the sum over $\ell$’s satisfying the above condition. Then,

$$
S_1 = T \cdot \sum_{\ell > 0}^* \frac{(a_\ell/b_\ell)^{ib}}{\sqrt{a_\ell b_\ell}} \int_{-\infty}^{\infty} \phi \left( \frac{t}{T} \right) \exp \left( -2\pi it \left( \frac{\alpha \log \frac{a_\ell}{b_\ell}}{2\pi} - \ell \right) \right) \cdot F(a_\ell, b_\ell, t) dt
$$

where

$$
F(a_\ell, b_\ell, t) := \sum_{h, k \leq T^\theta} b(h) b(k) \sum_{r \geq 1} \frac{1}{r} \sum_{\substack{m, n \geq 1 \\mk=a_r \\\\\\\\\\\\\\\\\nh=b_\ell r}} W \left( \frac{\alpha t + \beta}{2\pi mn} \right)
$$

and

$$
\mathcal{H}(x) = \frac{1}{2\pi i} \int_{(\varepsilon)} \zeta(1+2u) \cdot x^w G(w) \cdot \frac{dw}{w} = \begin{cases} \frac{1}{2} \cdot \log x + \gamma + O_A(x^{-A}) & \text{if } x \gg 1 \\ O_A(x^{-A}) & \text{if } x \ll 1 \end{cases}
$$

Proof. Given $\ell$, there is at most one $b_\ell \leq K_\ell$ for which there is a co-prime $a_\ell$ such that (18) holds, because Farey fractions with denominator $< K_\ell$ are spaced at least $K_\ell^{-2} = e^{2\pi t / \alpha} T^{-1+2\eta}$ far apart. Thus for each $\ell$, the sum over $a_\ell, b_\ell$ in $S_1$ consists of at most one element $(a_\ell, b_\ell)$,

$$
S_1 = \sum_{\ell > 0}^* \frac{(a_\ell/b_\ell)^{ib}}{\sqrt{a_\ell b_\ell}} \int_{-\infty}^{\infty} \phi \left( \frac{t}{T} \right) \exp \left( -2\pi it \left( \frac{\alpha \log \frac{a_\ell}{b_\ell}}{2\pi} - \ell \right) \right) \cdot \hat{f}_{m,n,T}(x)
$$

To simplify the above expression we write

$$
\hat{f}_{m,n,T}(x) = \int_{-\infty}^{\infty} W \left( \frac{2\pi mn}{\alpha t + \beta} \right) \phi \left( \frac{t}{T} \right) e^{-2\pi i xt} dt
$$

The sum $S_1$ can be now re-written as,

$$
T \sum_{\ell > 0}^* \frac{(a_\ell/b_\ell)^{ib}}{\sqrt{a_\ell b_\ell}} \int_{-\infty}^{\infty} \phi \left( \frac{t}{T} \right) \exp \left( -2\pi it \left( \frac{\alpha \log \frac{mh}{nk}}{2\pi} - \ell \right) \right) \cdot \sum_{r \geq 1} \frac{1}{r} \sum_{h, k \leq T^\theta} b(h) b(k) \sum_{\substack{mn \leq T^{1+\varepsilon} \\\\\\\\\\\\\nh=b_\ell r, mk=a_r}} W \left( \frac{2\pi mn}{\alpha t + \beta} \right) dt.
$$

Since $W(x) \ll x^{-A}$ for $x > 1$ and $at + b > T$ we complete the sum over $mn < T^{1+\varepsilon}$ to $m, n \geq 1$ making a negligible error term $\ll_A T^{-A}$. To finish the proof it remains to understand the expression

\begin{equation}
\sum_{h, k \leq T^\theta} b(h) b(k) \sum_{r \geq 1} \frac{1}{r} \sum_{\substack{mn \geq 1 \\\\\\\\\\\\\\\\\mk=a_r \\\\\\\\\\\\\\\\\nh=b_\ell r}} W \left( \frac{2\pi mn}{\alpha t + \beta} \right)
\end{equation}
We notice that
\[
\sum_{r \geq 1} \frac{1}{r} \sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} \frac{1}{(mn)^w} = \frac{1}{2\pi} \int_{(\epsilon)} \sum_{r \geq 1} \frac{1}{r} \sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} \frac{1}{(mn)^w} \cdot \left( \frac{\alpha t + \beta w}{2\pi} \right)^w G(w) \frac{dw}{w}.
\]

Furthermore \(nh = b\ell r\) and \(mk = a\ell r\) imply that \(mkb\ell = nha\ell\). On the other hand since \(a\ell\) and \(b\ell\) are co-prime the equality \(mkb\ell = nha\ell\) implies that there exists a unique \(r\) such that \(nh = b\ell r\) and \(mk = a\ell r\). We notice as-well that this unique \(r\) can be expressed as \((a\ell b\ell)/(mknh))^{-1/2}\). Therefore we have the equality,
\[
\sum_{r \geq 1} \frac{1}{r} \sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} \frac{1}{(mn)^w} = \sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} \frac{1}{(mn)^w} \cdot \sqrt{a\ell b\ell \over mknh}.
\]

We express the condition \(nha\ell = mkb\ell\) as \(ha\ell|kb\ell m\) and \(n = kb\ell m/(ha\ell)\) so as to reduce the double sum over \(m, n\) to a single sum over \(m\). Furthermore the condition \(ha\ell|kb\ell m\) can be dealt with by noticing that it is equivalent to \(ha\ell/(ha\ell, kb\ell)|m\). Using these observations we find that,
\[
\sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} \frac{1}{(mn)^w} \cdot \sqrt{a\ell b\ell \over mknh} = \left( {ha\ell, kb\ell \over h\ell k} \right) \cdot \zeta(1 + 2w) \cdot \left( {ha\ell, kb\ell \over ha\ell kb\ell} \right)^w.
\]

Plugging the above equation into (20) it follows that
\[
\sum_{r \geq 1} \frac{1}{r} \sum_{m,n \geq 1 \atop nh=b\ell r \atop mk=a\ell r} W \left( \frac{2\pi mn}{\alpha t + \beta} \right) = \left( {ha\ell, kb\ell \over h\ell k} \right) \cdot \mathcal{H} \left( {\alpha t + \beta \over 2\pi mn} \right)
\]

An easy calculation reveals that \(\mathcal{H}(x) = (1/2) \log x + \gamma + O_A(x^{-A})\) for \(x \gg 1\) and that \(\mathcal{H}(x) = O_A(x^A)\) for \(x \ll 1\). We conclude that equation (19) equals to
\[
\sum_{h,k \leq T^\theta} {b(h) b(k) \over h k} \cdot (ha\ell, kb\ell) \cdot \mathcal{H} \left( {\alpha t + \beta \over 2\pi mn} \right)
\]
as desired. \(\square\)

The second sum \(S_2\) can be bounded directly.

**Lemma 5.** We have \(S_2 \ll T^{1/2+\theta+\varepsilon}\).

**Proof** Recall that the \(a\ell, b\ell\) are always assumed to satisfy the condition
\[
(21) \quad \left| {a\ell \over b\ell} - e^{2\pi t/\alpha} \right| \leq e^{2\pi t/\alpha \over T^{1-\eta}}.
\]

Recall also that
\[
K_{\ell} := T^{1/2-\eta} e^{-\pi t/\alpha},
\]
\[
M_{\ell} := T^{1/2+\theta+\varepsilon} e^{-\pi t/\alpha}.
\]

Then,
\[
(22) \quad S_2 = \sum_{\ell \in \mathbb{Z}} \sum_{K_{\ell} < b_{\ell} < M_{\ell} \atop a_{\ell} \neq 1 \atop (a_{\ell}, b_{\ell}) = 1} \sum_{r \geq 1} \sum_{h,k \leq T^\theta} \frac{b(h)b(k)}{hk} \sum_{mn \leq T^{1+\varepsilon} \atop nh=b_{\ell}r \atop mk=a_{\ell}r} f_{m,n,T} \left( {\alpha \log(a_{\ell}/b_{\ell}) - \ell \over 2\pi} \right).
\]
We split the above sum into dyadic blocks \( b_\ell \sim N \) with \( K_\ell < N < M_\ell \). The number of \((a_\ell, b_\ell) = 1\) with \( b_\ell \sim N \) and satisfying (21) is bounded by

\[
\ll \frac{e^{2\pi \ell/a}}{T^{1-\eta}} \cdot N^2 + 1
\]

because Farey fractions with denominators of size \( \sim N \) are spaced at least \( N^{-2} \) apart. Therefore, for a fixed \( \ell \), using the bounds \( b(n) \ll n^\varepsilon \) and \( \int_{m,n,T(x)} \ll T \), the dyadic block with \( b_\ell \sim N \) contributes at most,

\[
(23) \quad \ll T^{1+\varepsilon} \sum_{\substack{b_\ell \sim N \\atop a_\ell \geq 1 \\atop \langle a_\ell, b_\ell \rangle = 1 \atop a_\ell, b_\ell \text{ satisfy (21)}}} \frac{1}{(a_\ell b_\ell)^{1/2}} \sum_{r < T^2} \sum_{\substack{m,n,h,k \\atop mh = a_\ell r \\atop nk = b_\ell r}} 1 \ll T^{1+\varepsilon} \sum_{\substack{b_\ell \sim N \\atop a_\ell \geq 1 \\atop \langle a_\ell, b_\ell \rangle = 1 \atop a_\ell, b_\ell \text{ satisfy (21)}}} \frac{1}{(a_\ell b_\ell)^{1/2-\varepsilon}}
\]

because

\[
\sum_{r < T^2} \frac{1}{r} \sum_{\substack{m,n,h,k \\atop mh = a_\ell r \\atop nk = b_\ell r}} 1 = \sum_{r < T^2} \frac{d(a_\ell r) d(b_\ell r)}{r} \ll (Ta_\ell b_\ell)^{\varepsilon}.
\]

Since \( a_\ell \sim b_\ell \cdot e^{2\pi \ell/a} \) the sum (23) is bounded by,

\[
\ll \frac{T}{N} \cdot (TN)^{\varepsilon} e^{-(1-\varepsilon)\pi \ell/a} \cdot \left( \frac{e^{2\pi \ell/a}}{T^{1-\eta}} \cdot N^2 + 1 \right).
\]

Keeping \( \ell \) fixed and summing over all possible dyadic blocks \( K_\ell < N < M_\ell \) shows that for fixed \( \ell \) the inner sum in (22) is bounded by

\[
(24) \quad \ll T^{\varepsilon+\eta} \cdot e^{\pi(1+\varepsilon)\ell/a} \cdot M_\ell^{1+\varepsilon} + T^{1+\varepsilon} \cdot K_\ell^{-1+\varepsilon} \cdot e^{-(1-\varepsilon)\pi \ell/a} \ll T^{1/2+\theta+\varepsilon+\eta} \cdot e^{\pi \ell/a} + T^{1/2+\eta+\varepsilon} \cdot e^{\pi \ell/a}.
\]

The condition (21) restricts \( \ell \) to \( 0 < \ell < 2a \log T \). Summing (24) over all \( 0 < \ell < 2a \log T \) we find that \( S_2 \) is bounded by \( T^{1/2+\theta+2\varepsilon+\eta} + T^{1/2+\eta+\varepsilon} \). Since \( \theta < \frac{1}{2} \) and we can take \( \eta, \varepsilon \) arbitrarily small, but fixed, the claim follows. \( \square \)

7. Acknowledgements

This work was done while both authors were visiting Centre de Recherches Mathématiques. We are grateful for their kind hospitality.

References


Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801 USA

E-mail address: xiannan@illinois.edu

Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, Stanford, CA 94305-2125

E-mail address: maksym@stanford.edu