The goal of this supplement is to give a “direct” proof of the following proposition. Along the way we define lower semi-continuity and see that any lower semi-continuous function on a closed segment attains its minimum.

Proposition. If \(f : [a, b] \rightarrow \mathbb{R} \) is continuous, then it is also uniformly continuous.

Proof. Fix \(\varepsilon > 0 \). Then for every \(x_0 \in \text{dom } f \) there exists \(\delta \) such that \(|x - x_0| < \delta \) implies \(|f(x) - f(x_0)| < \varepsilon \) (it will be important later that this inequality is strict).

We shall consider the set of all such deltas \(S(x_0, \varepsilon) \) and take “the largest such \(\delta \)” - namely \(\delta(x_0) = \sup\{\delta \in S(x_0, \varepsilon), x_0 - a, b - x_0\} \).

This is a function of \(x_0 \). If we could show that it has a positive minimum \(\delta \), then we could take that as a \(\delta \) in the definition of uniform continuity and be done (check that you understand why this is true!). But why should \(\delta(x_0) \) have a minimum?

Well, we know that continuous functions on segments attain their minimums, so if \(\delta(x_0) \) were continuous, we would have \(\delta = \delta(x) > 0 \) for some minimizing \(x \in [a, b] \) and be done. However, \(\delta(x) \) is not continuous.

Indeed, consider \(f(x) = \sin x \) for \(100 \leq x \leq 0 \) and \(0 < x \leq -100 \). For \(\varepsilon = 1 \) at \(x = 0 \) we have \(\delta_1(0) = \pi/2 \) but for any \(x \) slightly positive we have \(\delta_1(x) = 3\pi/2 - 2x \).

Perhaps the problem is that when defining \(\delta(x) \) we have made the inequality in \(|f(x) - f(x_0)| < \varepsilon \) strict?

But if we make the inequality non-strict then the same example shows \(\delta_1 \) jumping from 100 to \(3\pi/2 - 2x \).

Fortunately not all is lost. If we keep the inequality strict, then the value of \(\delta(x) \) can only jump up, but not down. This is called lower semi-continuous.

Definition 0.1. A function \(f \) is lower-semi continuous if for every \(\varepsilon > 0 \) exists \(\delta > 0 \) such that whenever \(|x - x_0| < \delta \) we get \(f(x) > f(x_0) - \varepsilon \).

The other half of the continuity definition – \(f(x) < f(x_0) + \varepsilon \) – is missing (it has the name of – what else? – upper semi-continuity).
It turns out lower semi-continuity is sufficient to ensure attainment of minima on closed segments.

Proposition. If \(f : [a, b] \to \mathbb{R} \) is lower semi-continuous then there exists \(s \in [a, b] \) such that \(f(x) \geq f(s) \) for all \(x \) in \([a, b]\).

Proof. The proof repeats the one for continuous \(f \). First, we show \(f \) is bounded below.

Indeed, if \(f \) is not bounded below, we build \(s_n \) with \(f(s_n) < -n \). Pick a subsequence converging to \(s \) and see that for \(\varepsilon = 1 \) there is \(\delta \) such that \(\delta \)-near \(s \) the values of \(f(x) \) are above \(f(s) - 1 \). This contradicts \(s_{nk} \) being \(\delta \)-close to \(s \) for large \(k \).

Then, we see that \(m = \inf f(x) \) exists and assuming \(f(x) \) is never equal \(m \), we build \(s_n \) with \(f(s_n) < s + 1/n \). Pick a subsequence converging to \(s \) and see that if \(f(s) > m \) then for \(\varepsilon = (f(s) - m)/2 \) there is a \(\delta \) such that \(\delta \)-close to \(s \) the values of \(f \) are above \(f(s) - \varepsilon = m + \varepsilon \). This contradicts \(s_{nk} \) being \(\delta \) close to \(s \) for large \(k \).

So there is an \(s \in [a, b] \) with \(f(s) \) minimal.

\(\Box \)

Lemma 0.2. \(\delta_x(x_0) \) is lower semi continuous.

Proof. Let \(e > 0 \). We want to find \(d \) such that any \(x \) that is \(d \)-close to \(x_0 \) has \(\delta(x) \) at least \(\delta_x(x_0) - e \).

To that effect, consider \(f \) on \(\delta_x(x_0) - \varepsilon/2 \) closed neighbourhood of \(x_0 \). This is smaller than \(\delta_x(x_0) \) so the function \(f \) stays within \(\varepsilon \) of \(f(x_0) \). As \(f \) is continuous, the values of \(f \) on this closed segment are a segment \([m, M]\) strictly contained in \([f(x_0) - \varepsilon, f(x_0) + \varepsilon]\). We will use the gap \(g = \min(m - (f(x_0) - \varepsilon), (f(x_0) + \varepsilon) - M) \), so that the values in \(\delta_x(x_0) - \varepsilon/2 \) closed neighbourhood of \(x_0 \) are within \(\varepsilon - g \) of \(f(x_0) \).

Since \(f \) is continuous at \(x_0 \) there is a \(\Delta \) such that for all \(x \) that are \(\Delta \)-close to \(x \), the value \(f(x) \) is within \(g \) of \(f(x_0) \). We can take \(\Delta < e/2 \) Then the values in the \(\delta_x(x_0) - \varepsilon/2 - \Delta \) neighbourhood of \(x \) are within \(g + (\varepsilon - g) = \varepsilon \) of \(f(x) \), and hence so are the values in the smaller \(\delta_x(x_0) - \varepsilon \) neighbourhood. So \(\delta_x(x) \) is at least \(\delta_x(x_0) - e \), as wanted.

\(\Box \)

Hence we have minimal \(\delta \) and \(f \) is uniformly continuous as we wished.

\(\Box \)