1 Convergent subsequences.

Last time we saw that all positive numbers in \mathbb{Q} can be listed as a sequence.

Proposition. This sequence has a subsequence converging to any positive real number x.

Proof. We will make a monotone non-decreasing sequence convergent to x by constructing it one by one.

First we use the density of \mathbb{Q} to pick rational $0 < t_1 < x$. Then $t_1 = s_{n_1}$ for some index n_1. We want to pick rational t_2 closer to x. We could just take $t_1 < t_2 < x$, but this is too weak. We will take t_2 at least twice as close to x as t_1, that is $x - t_2 < \frac{x-t_1}{2}$ aka $\frac{x+t_1}{2} < t_2 < x$. There is certainly such a rational t_2, and $t_2 = s_{n_2}$. The problem is that we want to have a subsequence of s_n, not just a subset of values, that is we want $n_2 > n_1$. That’s not a problem though - there are infinitely many rational numbers between $\frac{x+t_1}{2}$ and x and only finitely many of them could possibly be one of $s_1, s_2, \ldots, s_{n_1}$, so we can pick one that isn’t - that one will be s_{n_2} for some $n_2 > n_1$. All this work to build t_2. But now we are almost done. By the same argument we can find a rational $t_3 = s_{n_3}$ with $n_3 > n_2$ such that $\frac{x+t_2}{2} < t_3 < x$, then $t_4 = s_{n_3}$ and so on by induction. The resulting sequence is monotone increasing subsequence of s_n and we know $x - t_n < \frac{x-t_1}{2^n}$ which is less than ε for large n (this is why we wanted to half the distance at each step). This means t_n converges to x, as wanted.

Exercise: Prove that s_n has a decreasing subsequence converging to 0.

Exercise: Prove that s_n has a subsequence diverging to $+\infty$.

We have the fundamental theorem.

Theorem 1.1. Every bounded sequence has a subsequence which is Cauchy.
The idea is to force elements \(t_k \) of a subsequence into a smaller and smaller box \(B_k \) as \(k \) gets larger. It is good to draw a picture of these boxes as you follow the proof below.

Proof. We have \(m = m_1 < s_n < M = M_1 \), and \(B_1 = [m_1, M_1] \) be the first box. Let \(n_1 = 1 \) so that \(t_1 = s_1 \in B_1 \).

Then let \(a_1 = \frac{m_1 + M_1}{2} \), so \(a_1 \) divides the box \(B_1 \) into the left box \(L_1 = [m_1, a_1] \) and right box \(R_1 = [a_1, M_1] \).

We look at the set \(S_1 = \{ s_n \} \).

Then as \(S_1 \cap B_1 \) is infinite, at least one of \(S_1 \cap L_1 \) and \(S_1 \cap R_1 \) is infinite. In the first case denote \(m_2 = m_1 \) and \(M_2 = a_1 \) and in the second case denote \(m_2 = a_1 \) and \(M_2 = M_1 \) (if both are infinite do either). The second box is \(B_2 = [m_2, M_2] \).

Note that the length of \([m_2, M_2] \) is half that of \([m_1, M_1] \). Let \(n_2 \) be the such that \(n_2 > n_1 \) and \(t_2 = s_{n_2} \in B_2 \) and denote \(S_2 = S_1 \cap B_2 \).

We now repeat this process.

Let \(a_2 = \frac{m_2 + M_2}{2} \), so \(a_2 \) divides the box \(B_2 \) into the left box \(L_2 = [m_2, a_2] \) and right box \(R_2 = [a_2, M_2] \).

Then as \(S_2 \cap B_2 = S_2 \) is infinite, at least one of \(S_2 \cap L_2 \) and \(S_2 \cap R_2 \) is infinite. In the first case denote \(m_3 = m_2 \) and \(M_3 = a_2 \) and in the second case denote \(m_3 = a_2 \) and \(M_3 = M_2 \) (if both are infinite do either). Note that the length of \([m_3, M_3] \) is half that of \([m_2, M_2] \). Let \(a_3 = \frac{m_3 + M_3}{2} \). Let \(n_3 \) be the such that \(n_3 > n_2 \) and \(s_{n_3} \in [m_3, M_3] \) and denote \(S_3 = S_2 \cap [m_2, M_2] \).

We proceed in this manner building \(n_k \) (and \(m_k, M_k, a_k, B_k, L_k, R_k \) and \(S_k \)) by induction as we go along. We note that \(s_{n_k} \in S_K \) for all \(k > K \) and \(S_K \subset B_K = [m_K, M_K] \) so \(|s_{n_k} - s_{n_{k+1}}| < M_K - m_K = \frac{M_1 - m_1}{2^{k+1}} < \varepsilon \) for large enough \(K \). So indeed \(s_{n_k} \) is a Cauchy subsequence of \(s_k \).

\(\Box \)

Corollary 1.2 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

1.1 Monotone subsequence.

It turns out we can do better.

Namely, we can now prove the following stronger theorem.

Theorem 1.3. Every sequence \(s_n \) for which \(s = \limsup s_n \) is finite contains a monotone subsequence converging to \(s \).

Of course this applies to bounded sequences, and so reproves Bolzano-Weierstrass theorem above. This proof is, however, more complicted. Bolzano-Weierstrass is a fundamental result, so I felt it would be worthwhile to see a more direct proof.
before embarking to prove the stronger version presented here. Apart from it’s intrinsic interest, this stronger version lets us characterize the set of all subsequential limits of s_n better, and will also be used later when we discuss power series.

We will prove this next time.