1 Properties of \(\lim \inf \) and \(\lim \sup \).

Last time for a bounded sequence \(s_n \) we defined \(v_N = \sup\{s_n | n > N\} \) and \(u_N = \inf\{s_n | n > N\} \) and since \(v_N \) and \(u_n \) are bounded monotone, they converge, so we can define \(\lim \sup s_n = \lim v_N \) and \(\lim \inf s_n = \lim u_N \).

Note that \(v_N \geq u_N \), so \(\lim \sup s_n \geq \lim \inf s_n \).

We can extend these definitions to the case when \(s_n \) is not bounded. For example, when \(s_n \) is not bounded above, we have \(v_n = +\infty \) and we put \(\lim \sup s_n = +\infty \). Similarly, for a sequence not bounded below, \(u_N = -\infty \) and we put \(\lim \inf s_n = -\infty \). Not that the converse also holds - if \(\lim \sup s_n = \infty \) then \(s_n \) is not bounded from above, and if \(\lim \inf s_n = -\infty \) then \(s_n \) is not bounded from below.

There is however another issue.

Example 8: \(s_n = n \) This is not bounded above, so \(\lim \sup s_n = \infty \). But note \(u_N = N + 1 \), which also diverges to \(-\infty \). So \(\lim \inf s_n = -\infty \).

Example 9: \(s_n = n \) if \(n \) is odd and \(-\frac{1}{n} \) if \(n \) is even. Then \(\lim \sup s_n = \infty \) and \(\lim \inf s_n = 0 \) (check this!).

So in general \(\lim \sup s_n \) and \(\lim \inf s_n \) always make sense, and \(\lim \sup s_n \geq \lim \inf s_n \) but either or both may be infinite. We shall concentrate on bounded sequences, making only occasional remark about the unbounded ones.

To get a bit more intuition about \(\lim \inf \) and \(\lim \sup \), we have the following propositions:

Proposition 1.1. If \(B > s = \lim \sup s_n \) then there exists \(N \) such that \(s_n < B \) for all \(N > n \).

Proof. As \(v_N \) are decreasing converging to \(s \) we get \(v_N < B \) for some \(N \)(Details: For large \(N \) we have \(|v_N - s| = v_N - s = \varepsilon < B - s \), so \(v_N < B \)). Then as \(v_N \) is a supremum, \(s_n \leq v_N < B \) for all \(n > N \). \(\square \)
Proposition 1.2. If $B < \limsup s_n$ then for any N there is $n > N$ with $s_n > B$. That is, $s_n > N$ infinitely often.

Proof. As v_N decreases to a value above B, we get $v_N > B$ for all N. Since v_N is the supremum of $\{s_n | n > N\}$, it is the lowest upper bound, so $B > v_N$ is not an upper bound, which says we can get s_n above B for some $n > N$. This holds for arbitrary N so we are done.

So $\limsup s_n$ is the divider between those B for which s_n is eventually below them and those for which s_n goes above B infinitely often.

Note that for \limsup itself it can go either way - the sequence may never go above it, like for the $s_n = 1 - \frac{1}{n}$, or always go above it like $s_n = \frac{1}{n}$, or alternate as $s_n = (-1)^n \frac{1}{n}$, or equal it all the time like the constant sequence, or equal some of the time and not equal another part - anything goes really.

We have similar propositions for $\liminf s_n$.

Proposition 1.3. If $b < \liminf s_n$ then there exists N such that $s_n > b$ for all $N > n$.

Proposition 1.4. If $b > \liminf s_n$ then there are infinitely many s_n with $s_n < b$.

We have said that \limsup and \liminf determine the size of the box close to which s_n will stay eventually (s_n may venture above \limsup or below \liminf but by smaller and smaller amounts). So if the box is of size zero, then s_n eventually stays close to some particular number, so it stands to reason that that number is s_n’s limit.

Proposition. If $\limsup s_n = \liminf s_n = s$ then s_n converges to s.

Proof. For a given $\varepsilon > 0$ we need $s - \varepsilon < s_n < s + \varepsilon$ for all $n > N$. This is basically saying that $s + \varepsilon$ is an upper bound for $\{s_n | n > N\}$ and $s - \varepsilon$ is a lower bound. Those are true precisely when $v_N \leq s + \varepsilon$ and $u_N \geq s - \varepsilon$. But both v_N and u_N converge to s, so that holds for large N.

The formal proof is written in reverse.

For any ε there exists N_1 such that $v_{N_1} < s + \varepsilon$ and exists N_2 such that $u_{N_2} > s - \varepsilon$. Then for $N > \max\{N_1, N_2\}$ we get $s + \varepsilon > v_N \geq s_n \geq u_N > s - \varepsilon$, so that $|s - s_n| < \varepsilon$, as wanted.

There is also an alternative proof.

Proof. We have $u_n \leq s_{n+1} \leq v_n$, and as $\lim v_n = \lim s_n = s$ by the squeeze theorem s_{n+1} converges to s as well, but then so does s_n.

2
Note that $\limsup s_n = \liminf s_n = \infty$ means u_N diverge to $+\infty$, so for any M there is N with $u_N > M$ and hence $s_n \geq u_N < M$. and s_n diverges to $+\infty$. Similar result holds for $\limsup s_n = \liminf s_n = -\infty$. So the Proposition extends to those cases.

Next time we will show the converse and use these “limit detection” properties of \liminf and \limsup to get an equivalent definition of convergent sequence without explicitly mentioning the limit!