PROBLEM 1.

1. \(\sum_{n=1}^{\infty} \frac{1}{n+1} \) diverges because \((-1)^n \frac{1}{n} x \to 0.

\[
\text{(In fact, } |(-1)^n \frac{1}{n} | \to 1)\]

2. \(\sum_{n=1}^{\infty} \frac{2n+1}{3n+1} \) converges by comparison test,

\[
2^{n+1} < 2^n + 2^n \quad \text{and} \quad 3n+1 > 3^n, \quad \text{so}
\]

\[
\frac{2^{n+1}}{3n+1} < \frac{2 \cdot 2^n}{3^n} = 2 \cdot \left(\frac{2}{3}\right)^n \quad \text{and} \quad \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n
\]
forms a convergent geometric series.

3. \(\sum_{n=1}^{\infty} n \log n \) converges by integral test.

Let \(f(x) = x \log x \). Both \(x \) and \(\log x \) are increasing on \((1, \infty)\).

\[
\text{Thus, } f(x) \text{ is decreasing on } [n, n+1]. \quad \text{Also } f(n) = an
\]

\[
\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} x \log x \, dx = \int_{1}^{\infty} e^{u} \, du
\]

\[
\left. \frac{e^{u}}{u} \right|_{1}^{\infty} = \lim_{u \to \infty} \left(\frac{e^{u}}{u} - \frac{1}{e} \right) = \infty
\]

\[
\Rightarrow \sum_{n=1}^{\infty} n \log n \text{ converges}
\]

PROBLEM 2.

For all \(s, t \in SUT \), so \(s \leq \sup SUT \).

Since this holds for all \(s, t \), then \(\sup S \leq \sup SUT \).

Likewise, \(\sup T \leq \sup SUT \).

\[
\Rightarrow \max \{ \sup S, \sup T \} \leq \sup SUT
\]

On the other hand, let \(x \in SUT \).

If \(x \in S \), then \(x \leq \sup S \leq \max \{ \sup S, \sup T \} \).

If \(x \in T \), then \(x \leq \sup T \leq \max \{ \sup S, \sup T \} \).

Hence, \(x \leq \max \{ \sup S, \sup T \} \).

Since this holds for all \(x \in SUT \), then

\[
\sup SUT \leq \max \{ \sup S, \sup T \}
\]
(2) Let \(x \in S \cap T \). Then \(x \in S \) and \(x \in T \).

\[
\begin{align*}
\sup S, \sup T & \leq x \leq \min \{\sup S, \sup T\} \\
\text{This is true for all } x \in S \cap T, \quad \Rightarrow \\
\sup S \cap T & \leq \min \{\sup S, \sup T\}
\end{align*}
\]

(3) Let \(S = \{1, 2, 3\} \), \(T = \{1, 3\} \).

Then \(\sup \{S \cap T\} = \sup \{1, 3\} = 3 \)

but \(\min \{S \cap T\} = \min \{1, 3\} = 1 \)

PROBLEM 3

Let \(P(x) = x^3 \). Polynomials are continuous, so \(P \) is continuous.

\(P \) is strictly increasing on \(\mathbb{R} \), and \(\mathbb{R} = (-\infty, \infty) \) is an interval.

Then \(f^{-1}(y) = y^{1/3} \) represents a continuous function with domain \(f(\mathbb{R}) = \mathbb{R} \).

Hence, \(f^{-1}(y) = y^{1/3} \) is a continuous function on \(\mathbb{R} \).

Then \(S_n \to S \Rightarrow \sqrt[3]{S_n} \to \sqrt[3]{S} \), i.e. \(S_n \to S \).

and likewise \(\sqrt[3]{T_n} \to \sqrt[3]{T} \).

Finally, \(\sqrt[3]{S_n} + \sqrt[3]{T_n} \to \sqrt[3]{S} + \sqrt[3]{T} \).

PROBLEM 4

(1) Let \(x_0 \) be such that \(g(x_0) = 0 \).

Let \(\varepsilon > 0 \). Since \(g \) is continuous, \(\exists \delta > 0 \) s.t. \(|x - x_0| < \delta \Rightarrow |g(x) - g(x_0)| < \varepsilon \).

\[
|g(x) - g(x_0)| = |g(x) - 0| = |g(x)| < \varepsilon
\]

With \(\delta \) as above, let \(|x - x_0| < \delta \).

Clearly \(f(x_0) = 0 \). So:

- If \(x \) is rational, \(f(x) = g(x) \), \(\Rightarrow \)
 \[
 |f(x) - f(x_0)| = |g(x) - 0| = |g(x)| < \varepsilon
 \]

- If \(x \) is irrational, \(f(x) = 0 \), \(\Rightarrow \)
 \[
 |f(x) - f(x_0)| = |0 - 0| = 0 < \varepsilon
 \]

Hence, \(|x - x_0| < \varepsilon \) \(\Rightarrow |f(x) - f(x_0)| < \varepsilon \).

\(\therefore f \) is continuous at \(x \).
(2) Let \(x_0 \) be such that \(g(x_0) \neq 0 \), and assume \(f \) continuous at \(x_0

Both rationals and irrationals are dense in \(\mathbb{R} \), so

- \(\exists \) a sequence of rationals \(r_n \) s.t. \(r_n \to x_0 \)

From continuity of \(f \),

\[
f(r_n) \to f(x_0)
\]

But \(f(r_n) = g(r_n) \), and \(r_n \to x_0 \), \(g \) continuous, so

\[
f(r_n) = g(r_n) \to g(x_0)
\]

\(\Rightarrow \) By uniqueness of limit, \(f(x_0) = g(x_0) \) --- (1)

- \(\exists \) a sequence of irrationals \(s_n \) s.t. \(s_n \to x_0 \)

Then \(f(s_n) \to f(x_0) \).

But \(f(s_n) = 0 \), \(\forall n \) \(\Rightarrow f(x_0) = 0 \) --- (2)

Hence, \(f(x_0) = 0 \) & \(f(x_0) = g(x_0) \) \(\Rightarrow g(x) = 0 \), contradicting

the fact that \(g(x_0) \neq 0 \)

\(\Rightarrow f \) is discontinuous at \(x_0 \)

Problems

\(f \) is uniformly continuous on \((0,1) \) iff \(f \) can be extended
to a continuous function \(\tilde{f} \) on \([0,1] \).

So consider

\[
f(x) = \left\{ \begin{array}{ll}
x \sin \frac{1}{x} & \text{if } x \in (0,1) \\
0 & \text{if } x = 0
\end{array} \right.
\]

Clearly \(\tilde{f} \) extends \(f \) and \(\tilde{f} \) is continuous in \((0,1) \),
because both \(x \) and \(\sin \frac{1}{x} \) are such that

\(g(x) = \sin x \) is continuous everywhere, \(h(x) \) continuous on \((0,1) \)

\(\Rightarrow (g \circ h)(x) = \sin \frac{1}{x} \) is continuous on \((0,1) \)
At \(x = 0 \), let \(\varepsilon > 0 \). Then, for \(\delta = \varepsilon / 2 \), if \(|x - 0| = |x| < \delta \),

\[
0 < \delta = \varepsilon / 2 \leq |x| < \delta \Rightarrow |x - 0| = |x| < \delta
\]

\[
|\tilde{f}(x) - \tilde{f}(0)| = |x \sin \frac{1}{x} - 0| = |x| |\sin \frac{1}{x} - 0| = |x| \leq |x + 1| \leq 1 \leq \varepsilon
\]

So \(|x - 0| < \delta \Rightarrow |\tilde{f}(x) - \tilde{f}(0)| < \varepsilon \)

\[\Rightarrow \tilde{f} \text{ is continuous at } 0.\]

So \(\tilde{f} \) is a continuous extension of \(f \) to \([0, 1]\)

i. \(f \) is uniformly continuous on \((0, 1)\)

Problem 6

1. \[
\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1-x} \rightarrow \frac{1-0}{1-x} = \frac{1}{1-x} \text{ as } n \to \infty \text{ for } |x| < 1
\]

So \(|x| < 1 \Rightarrow \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \)

Then, for \(x = \frac{1}{2} \), \(\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 - \frac{1}{2} = 2 \)

2. \[
\sum_{k=1}^{n} kx^{k-1} = \left(\sum_{k=0}^{n} x^k \right)' = \left(\frac{1-x^{n+1}}{1-x} \right)' = \frac{-n x^n (1-x) - (1)(1-x')}{(1-x)^2} = \frac{-nx^n + nx^n + 1 - x^n}{(1-x)^2} = \frac{0+0+1-0}{(1-x)^2} = \frac{1}{(1-x)^2} \text{ as } n \to \infty \text{ for } |x| < 1
\]

Thus \(\sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2} \) for \(|x| < 1 \)

For \(x = \frac{1}{2} \), \(\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} = \frac{1}{2^0} = 4 \quad \Rightarrow \quad \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \cdot 4 = 2 \)

\[
= \sum_{n=0}^{\infty} \frac{n+1}{2^n} = \frac{0}{2^0} + \sum_{n=1}^{\infty} \frac{n}{2^n} + \sum_{n=0}^{\infty} \frac{1}{2^n} = 0 + 2 + 2 = 4
\]

= 2 from (1)
PROBLEM 7

For all $x \in \mathbb{R}$,
\[
\begin{align*}
\frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2}
&= \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty, \\
&\text{so by Weierstrass M-test,} \\
\frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} \sin((2k+1)\pi x)
&\text{converges uniformly on } \mathbb{R}.
\end{align*}
\]

PROBLEM 8

Let $f'(a)$ exist and $\epsilon > 0$. Since
\[
\frac{f(x) - f(a)}{x - a} \to f'(a),
\]
there exists δ such that $0 < |x - a| < \delta \Rightarrow \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \frac{\epsilon}{2}.
\]

Let $\delta = \min \{ \delta, \frac{\delta}{2|f'(a)| + 1} \} > 0$.

Then, for all x such that $|x - a| < \delta$,

- if $x = a$, $|f(x) - f(a)| = |f(a) - f(a)| = 0 < \delta$.

- if $x \neq a$, $|x - a| < \delta \Rightarrow \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \frac{\epsilon}{2}.
\]

\[
\left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \frac{\epsilon}{2}.
\]

\[
\Rightarrow |f(x) - f(a)| < \frac{\epsilon}{|f'(a)| + 1}.
\]

\[
|f(x) - f(a)| < (|f'(a)| + 1) \cdot \frac{\epsilon}{|f'(a)| + 1}.
\]

\[
< (|f'(a)| + 1) \cdot \frac{\epsilon}{|f'(a)| + 1}.
\]

\[
= \frac{\epsilon}{|f'(a)| + 1}.
\]

\[
\Rightarrow |x - a| < \delta \Rightarrow |f(x) - f(a)| < \delta.
\]

So $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \delta = \epsilon$.

f is continuous at a.

\[\text{page 5}\]
PROBLEM 9.

(1) \(\sum \frac{x^n}{n^2 + 2n} = \sum \frac{1}{n^2 + 2n} x^n \)

\[
\limsup \left(\frac{1}{n^2 + 2n} \right)^{1/n} = 1, \text{ so the radius of convergence is } R = \frac{1}{2} = 1.
\]

At \(R = 1 \),

\[
\sum \left(\frac{1}{n^2 + 2n} \right)^n < \sum \frac{1}{n^2} \quad \text{and} \quad \sum \frac{1}{n^2} \quad \text{converges} \Rightarrow \sum \frac{1}{n^2} \quad \text{converges}
\]

At \(R = -1 \),

\[
\sum \frac{(-1)^n}{n^2 + 2n} = \sum (-1)^n \frac{1}{n^2 + 2n}, \quad \text{and} \quad \frac{1}{n^2 + 2n} \quad \text{is a decreasing sequence with limit 0, so by alternating series test,}
\]

\[
\sum \frac{(-1)^n}{n^2 + 2n} \quad \text{converges}
\]

(2) \(\sum x^n = \sum a_n x^n \), where \(a_n = 1 \) if \(x = n^2 \) and 0 otherwise.

\[
= 1 \limsup a_n^{1/n} = 1. \quad \text{Hence, } R = 1
\]

At \(R = 1 \), \(\sum x^n = \sum 1 \), \(\sum x^n \) diverges.

At \(R = -1 \), the partial sums of \(\sum (-1)^n \) are \(S_n = \sum_{k=0}^{n} (-1)^k = 1 - (-1) - (-1)^2 \), so \(S_n = 0 \) if \(n \) odd and \(S_n = 1 \) if \(n \) even. Hence, \(S_n \) does not converge \(\Rightarrow \) \(\sum x^n \) does not converge for \(x = -1 \).

PROBLEM 10

Let \(\varepsilon > 0 \). \(P_n \to P \) uniformly, so \(\exists N \) such that

\[
|P_n(x) - P(x)| < \varepsilon/3 \quad \text{for all } x \in (0, 1)
\]
So let \(n > N \) be any integer.

\(f_n \) is uniformly continuous, so \(\exists \delta > 0 \) s.t.
\[
|x - y| < \delta \implies |f_n(x) - f_n(y)| < \varepsilon/3 \quad \text{(8)}
\]

Then, for this \(\delta \), \(|x - y| < \delta \)

\[
|f(x) - f(y)| = |(f(x) - f_n(x)) + (f_n(x) - f_n(y)) + (f_n(y) - f(y))| \\
\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \\
< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon
\]

because
\[
n > N \implies |f(x) - f_n(x)| < \varepsilon/3 \quad \text{and} \quad |f_n(y) - f(y)| < \varepsilon/3 \quad \text{for} \quad x, y \in (a, 1) \quad \text{and}
\quad |f_n(x) - f_n(y)| < \varepsilon/3 \quad \text{from} \quad (8)
\]

Hence, \(|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon \)

\(\Rightarrow \) \(f \) is uniformly continuous on \((a, 1) \)

Problem 11.

Let \(f(x) = 0 \). Then \(f_n \to f \) pointwise.

Let \(x \in \mathbb{R} \). For all \(n > 1 + x \), \(x - n < x - 1 + x - 1 < 0 \), so
\[
x - n \not\in [0, 1] \implies f_n(x) = f(x - n) = 0 \quad \text{for all} \quad n > 1 + x
\]

Hence, \(f_n(x) \to 0 = f(1) \) as \(n \to \infty \).

10. \(f_n \to f \) pointwise.

The convergence is not uniform: for all \(n > 1 \),
\[
|f_n(n) - f(n)| = |f(n - n) - f(n)| = |f(1) - f(0)| = 1 - 0 = 1
\]

So there is no \(N \) such that for all \(n > N \) and all \(x \in \mathbb{R} \),
\[
|f_n(x) - f(x)| < \frac{1}{n}
\]