1. October 12–October 16,
 Compactness: Theorems of Bolzano-Weierstrass and of Heine-Borel.
 Read §13 in the textbook.

 Some details: October 14:
 - Review: Open and closed sets in a metric space. (the metric space we focus on as main example is \(\mathbb{R} \) or \(\mathbb{R}^k \)). The union of any set of open sets is open; the intersection of finitely many open sets is open.
 - The intersection of any number of closed sets is closed; finite unions of closed sets are closed.
 - Limit points, a set is closed if it contains its limit points.
 - The set of limit points of any set is closed.
 - Proof of of Bolzano-Weierstrass (repeated).
 - Closure and interior of a set. Boundary.
 - Open cover and subcover. Proof of Heine-Borel

2. October 19–October 23
 Series. Absolute versus conditional convergence.
 Summation (limit of the sequence of partial sums) and summability.
 Read §14 – §16 in the textbook.

 Some details: A permuted *absolutely* convergent series converges to the same limit as the original.
 - A permuted conditionally (not absolutely) convergent series \(\sum a_n \) can converge to any prescribed limit: given a value \(L \in \mathbb{R} \), or a “mode of divergence”, there exists a permutation \(\sigma \) of \(\mathbb{N} \) such that \(\sum a_{\sigma(n)} \) behaves as prescribed.

3. October 26–October 30
 Continuity and basic properties of continuous functions.
 Read Chapter 3 in the textbook.