Math 115, fall 2009, Review problems,

1. For \(0 \leq k \leq n \), define \(\binom{n}{k} \) as the number of distinct \(k \)-element subsets of the set \(\{1, 2, \ldots, n\} \).
 a. Prove that \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \).
 b. Prove by induction that \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \).

2. a. Knowing that \(\mathbb{R} \) is complete, prove that \(\mathbb{R}^3 \) endowed with the metric \(\|x-y\| = \sqrt{\sum_{i=1}^{3} (x_i - y_i)^2} \) (where \(x = (x_1, x_2, x_3) \) and \(y = (y_1, y_2, y_3) \)) is complete: every Cauchy sequence in \(\mathbb{R}^3 \) has a limit.
 b. Prove: Every closed and bounded set \(E \subset \mathbb{R}^3 \) is compact (i.e., every open cover of \(E \) has a finite subcover).

3. Assume \(a > 0 \), \(p \) an arbitrary real number. Prove: \(\lim_{n \to \infty} n^p (1 + a)^{-n} = 0 \).
 Hint: Use the binomial expansion of \((1 + a)^n \)
 Answer: By the binomial expansion, \((1 + a)^n > \binom{n}{k} a^k \) when \(n > k \).
 Take \(k > p + 1 \) and remember \(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \) so that for the constant \(C = a^{-k}2^k \) and \(n > 2k \) we have \((1 + a)^n > C^{-1}n^k \) and \(n^p (1 + a)^{-n} < Cn^{-p-k} < \frac{C}{n} \) which converges to zero.

4. Prove or disprove (by giving a counter-example) each of the following statements: (the sequences \(\{a_n\} \) and \(\{b_n\} \) are assumed to be bounded sequences of real numbers)
 a. \(\limsup(a_n + b_n) \leq \limsup a_n + \limsup b_n \).
 b. \(\limsup a_n b_n \leq \limsup a_n \limsup b_n \).
 c. \(\liminf(a_n + b_n) \leq \liminf a_n + \liminf b_n \).
 d. \(\liminf(a_n + b_n) \geq \liminf a_n + \liminf b_n \).
 Answer:
 a. True: For every \(\epsilon > 0 \), appropriate \(N \) and \(j > N \), \(a_j < \limsup a_n + \epsilon \), \(b_j < \limsup b_n + \epsilon \) so that \(a_j + b_j < \limsup a_n + \limsup b_n + 2\epsilon \).
 b. False (unless, e.g., both sequences are positive): \(a_n = 1 + (-1)^n \) and \(b_n = -1 \). Then \(\limsup a_n = 2 \), \(\limsup b_n = -1 \) so their product is \(-2\) while \(\limsup a_n b_n = 0 \). of the limits
 c. False: \(a_n = 1 + (-1)^n \), \(b_n = 1 - (-1)^n \). We have \(\liminf a_n = \liminf b_n = 0 \), while \(\liminf(a_n + b_n) = 1 \).
 d. True. This is a. in which everything is multiplied by \(-1\).

5. Let \(f \) be defined and differentiable in \([a,b]\), and assume that \(f'(x) > 0 \) for all \(x \in [a,b] \).
 a. Prove that \(f \) is strictly monotone on \([a,b]\).
 b. Prove that the inverse function \(f^{-1} \) is differentiable on \([f(a), f(b)]\);
 c. what is the derivative of \(f^{-1} \)?
d. Is the derivative of f^{-1} necessarily bounded?

Answer: No. f' can be positive everywhere but not bounded away from 0.

Example: $f(x) = x + \sum_{n=5}^{\infty} \varphi_n(x)$ where φ_n is differentiable, $\varphi_n(x) = 0$ outside the interval $I_n = \{x: |x - n^{-1}| < n^{-5}\}$ and range of φ_n' is $[n^{-2} - 1, 2]$. φ_n has no effect on $f''(0)$, but $\liminf_{x \to 0} f'(x) = 0$

6. Let f be differentiable in $[0, 2]$. Assume $f(0) = 0$, $f(1) = -1$ and $f(2) = 3$. Prove that the equation $f'(x) = 0$ has at least one solution in $(0, 2)$.

Answer: $\min_{0 < x < 2} f(x)$ is attained at a point in $(0, 2)$.

7. Assume that f is continuous on $[0, 1]$, $f(0) = 2$, $f(1) = 1/3$. Prove that for some $x \in [0, 1]$ we have $f(x) = 2x$.

Answer: $g(x) = f(x) - 2x$ is positive for $x = 0$ and negative for $x = 1$.

8. Let $p > 0$, $m \in \mathbb{N}$ (a positive integer). Prove the following upper and lower bounds for $\sum_{m+1}^{2m} n^{-p}$:

$$2^{-p} m^{1-p} \leq \sum_{m+1}^{2m} n^{-p} \leq m^{1-p}.$$

(a) Use these to prove that $\sum_{1}^{\infty} n^{-p}$ is convergent if $p > 1$, and divergent if $p \leq 1$.

(b) For what pairs p, q is the series $\sum_{2}^{\infty} n^{-p} \log^q n$ convergent?

9. Let f be differentiable with continuous derivative on a finite closed interval I. Prove that f is uniformly continuous on I.

Answer: The derivative f' is bounded (continuous on a compact interval). By the mean value theorem $|f(y) - f(x)| \leq \sup |f'| |y - x|$.

10. Let f_n be positive continuous functions on $[0, 1]$.

(a) Assume that $\sum_{1}^{\infty} f_n(x) > 1$ for all $x \in [0, 1]$. Prove that there exists an integer N such that $\sum_{1}^{N} f_n(x) > 1$ for all $x \in [0, 1]$.

Hint: The sets $A_m = \{x: \sum_{1}^{m} f_n(x) > 1\}$ are open.

Answer: $\bigcup A_m = [0, 1]$ and as $[0, 1]$ is compact and A_m form an open cover thereof (and A_m increase with m), there is an N such that $A_N = [0, 1]$.

(b) Assume that the series $\sum_{1}^{\infty} f_n(x)$ converges everywhere to a continuous function F.

(a) Prove that the convergence is uniform.

Hint: For all $\varepsilon > 0$, the sets $B_m = \{x: \sum_{1}^{m} f_n(x) > F(x) - \varepsilon\}$ are open.

Answer: $\bigcup B_m = [0, 1]$, and as above, the compactness of $[0, 1]$ provides an $N = N_\varepsilon$ such that $B_N = [0, 1]$.

DECEMBER 4, 2009
11. Show by an example that the conclusion may be false without the assumption that F is continuous.

Answer: Let $f_n(x)$ be nonnegative and continuous on $[0, 1]$, $f_n(1/2n) = 1$, $f_n(x) = 0$ if $|x - 1/2n| > 1/n^3$. Then $\sum f_n(x)$ converges everywhere since for every point x there is at most one n such that $f_n(x) \neq 0$. The limit $\sum f_n$ is not continuous at $x = 0$ (and only there), and the convergence is not uniform.

12. Assume that the series $\sum f_n(x)$ converges everywhere to an integrable function F. Prove that

$$\int_0^1 F(x)dx = \sum \int_0^1 f_n(x)dx.$$

Hints: Since $F(x) > \sum f_n(x)$ for all N, we have $\int_0^1 F(x)dx \geq \sum \int_0^1 f_n(x)dx$. It is the reverse inequality that needs addressing. Use the fact that if $F(x) > c$ for all x in some interval $[a, b]$, then for N big enough, $\sum f_n(x) > c$ everywhere on $[a, b]$.

11. Assume that f is monotone increasing on $[a, b]$, $f(a) = 0$, $f(b) = 1$.

a. Prove that f is integrable.

Answer: Let $P = \{t_i\}$ be a partition of $[a, b]$, whose mesh $\max(t_{j+1} - t_j) \leq \delta$. The upper Darboux sum is $U(f, P) = \sum f(t_{j+1})(t_{j+1} - t_j)$ and the lower is $L(f, P) = \sum f(t_j)(t_{j+1} - t_j)$.

$$U(f, P) - L(f, P) = \sum (f(t_{j+1}) - f(t_j))(t_{j+1} - t_j) \leq \sum \max(f(t_{j+1}) - f(t_j)) \max(t_{j+1} - t_j) \leq \delta.$$

b. Prove that for all $c \in [a, b]$, the limits $\lim_{x \to c^-} f(x)$ and $\lim_{x \to c^+} f(x)$ exist, $\lim_{x \to c^-} f(x) = \liminf_{x \to c} f(x)$, and $\lim_{x \to c^+} f(x) = \limsup_{x \to c} f(x)$.

c. Prove that $\sum o_f(c) \leq 1$, the sum over all $c \in [a, b]$. (Remember that $o_f(c)$ denotes the oscillation (or jump) of f at c.)

Hint: With the given f, how many points c can there be with $o_f(c) > 1/n$?

d. Conclude that f is continuous at all but countably many points in $[a, b]$.

12. Prove that a function of bounded variation on the interval $[0, 1]$ is integrable.

Hint: Prove that a function of bounded variation is the difference of two monotone functions.

Answer: A more direct proof is the observation that for every partition of $[0, 1]$ into ‘atoms’ $\{J_m\}_1^N$ the sum $\sum (\sup_{x \in J_m} f(x) - \min_{x \in J_m} f(x))$ is bounded by the total variation V_f of f. This implies that if P is a partition of mesh ε then $U(f, P) - L(f, P) \leq \varepsilon V_f$.

3 DECEMBER 4, 2009
13. Definition: A family \(\{ f_\alpha \}_{\alpha \in A} \) of functions with a common domain \(S \) is **equicontinuous at a point** \(c \in S \) if for every \(\varepsilon > 0 \) there exist \(\delta = \delta(\varepsilon, c) \) such that if \(x \in S \) and \(|x - c| < \delta \) then \(|f_\alpha(x) - f_\alpha(c)| < \varepsilon \) for all \(\alpha \in A \).

The family is **equicontinuous on** \(S \) if it is equicontinuous at every \(c \in S \); it is **uniformly equicontinuous on** \(S \) if for every \(\varepsilon > 0 \) there is \(\delta = \delta(\varepsilon) \) such that if \(x, y \in S \) and \(|x - y| < \delta \) then \(|f_\alpha(x) - f_\alpha(y)| < \varepsilon \) for all \(\alpha \in A \) (in other words, \(\delta = \delta(\varepsilon) \) can be taken common to all \(c \in S \) and \(\alpha \in A \)).

a. Assume that \(\{ f_\alpha \}_{\alpha \in A} \) is equicontinuous on a finite interval \([a, b]\). Prove that it is uniformly equicontinuous there.

b. Assume that \(f_n \), for \(n = 1, 2, \ldots \), are continuous real-valued functions on a closed finite interval \(I \), and that \(f_n \to f \) uniformly on \(I \).

Prove that the sequence \(\{ f_n \} \) is uniformly equicontinuous on \(I \).

Is the same statement true if \(I \) is not closed?

14. Let \(\{ f_n \} \) be a sequence of real-valued differentiable functions on a finite interval \([a, b]\), uniformly convergent to a function \(f \). Prove that \(\int_a^b f(x)dx = \lim_{n \to \infty} \int_a^b f_n(x)dx \).

a. Is it true that \(f \) is necessarily differentiable?

b. If you know that \(f \) is differentiable is it true that \(f' = \lim_{n \to \infty} f'_n \)?

Hint: Consider the example \(f_n(x) = n^{-1} \sin n^2 x \)

c. Prove that if the derivatives \(f'_n \) are continuous, and \(\{ f'_n \} \) is uniformly convergent on \([a, b]\), then \(f \) is differentiable and \(f' = \lim_{n \to \infty} f'_n \).

Hint: Start by integrating.

15. Assume that the radius of convergence of the series \(\sum_0^\infty a_n x^n \) is equal to 1. Prove the correct statements below and give a counter-example to the false ones:

a. The series converges uniformly in \([-1, 1]\).

b. The radius of convergence of the series \(\sum_0^\infty n a_n x^n \) is equal to 1.

c. The sum \(f(x) = \sum_0^\infty a_n x^n \) is a continuous function on \((-1, 1)\).

d. For every \(y \in (-1.1) \),
 \[\int_0^y \sum_0^\infty a_n x^n dx = \sum_0^\infty \frac{a_n}{n+1} y^{n+1} \]

e. The sum \(f(x) = \sum a_n x^n \) is differentiable on \((-1, 1)\), and \(f'(x) = \sum n a_n x^{n-1} \).
16. a. Prove: If both series $\sum_{0}^{\infty} a_n$ and $\sum_{0}^{\infty} b_n$ converge absolutely, and $c_n = \sum_{0}^{n} a_m b_{n-m}$, then $\sum c_n$ converges absolutely, and $\sum_{0}^{\infty} c_n = (\sum_{0}^{\infty} a_n) (\sum_{0}^{\infty} b_n)$.

b. Define $e(x) = \sum_{0}^{\infty} \frac{1}{m!} x^m$. Show that for all real x, y we have $e(x + y) = e(x)e(y)$.

17. Let $f \in C([a, b])$. Define $F(x) = \int_{a}^{x} f(t) \, dt$, for $a \leq x \leq b$.

a. Prove that $F \in C([a, b])$.

b. Prove that F is in fact differentiable, and find its derivative.

18. The oscillation of a function f at a point c in its domain is defined by

\[(18.1) \quad o_f(c) = \lim_{x \to c} \sup_{|x-c|} f(x) - \lim_{x \to c} \inf_{|x-c|} f(x).\]

Another way to define the oscillation is: $o_f(c) = \sup A$, the supremum over all the real numbers A such that for all $\delta > 0$, there exist points $x, y \in (c - \delta, c + \delta)$ with $|f(x) - f(y)| > A$.

a. Prove that the two definitions agree.

Hint: $\limsup_{x \to c} f(x) = \lim_{\delta \to 0} \sup_{|x-c| \leq \delta} f(x)$, $\liminf_{x \to c} f(x) = \lim_{\delta \to 0} \inf_{|x-c| \leq \delta} f(x)$

Answer: Denote the value of the oscillation according to the second definition by $o_f^*(c)$, keeping the notation $o_f(c)$ for the first. Denote $\limsup_{x \to c} f(x) = M$, $\liminf_{x \to c} f(x) = m$, so that $o_f(c) = M - m$. We need to show that $o_f^*(c) = M - m$.

For any $\epsilon > 0$ and $\delta > 0$, there exist points x such that $|x - c| < \delta$ and $f(x) > M - \epsilon$ as well as points y such that $|y - c| < \delta$ and $f(y) < m + \epsilon$. It follows that $o_f^*(c) \geq M - m$. On the other hand, for any $\epsilon > 0$ there exists $\delta_0 > 0$ such that if $\delta < \delta_0$ then $|x - c| < \delta$ implies $m - \epsilon < f(x) < M + \epsilon$. This proves that $o_f^*(f) \leq M - m$.

b. Prove that for any real-valued f and any constant B, the set $\{c : o_f(c) \geq B\}$ is closed.

Answer: If x_0 is a limit point of $\{c : o_f(c) \geq B\}$ then, for any $\delta > 0$ there exist $x_1 \in \{c : o_f(c) \geq B\}$ such that $|x_0 - x_1| < \delta/2$. By the second definition of the oscillation, given $\epsilon > 0$, there exist $x, y \in (x_0 - \delta/2, x_1 + \delta/2) \cap (x_0 - \delta, x_0 + \delta)$ such that $|f(x) - f(y)| > B - \epsilon$. Thus $o_{x_0}(f) \geq B$.

c. Prove that if f, g are real-valued functions, f continuous and $|f(x) - g(x)| \leq \epsilon$ for all x, then (the oscillation) $o_g(c) \leq 2\epsilon$ for all c.

Answer: $|g(x) - g(y)| \leq |g(x) - f(x)| + |f(x) - f(y)| + |f(y) - g(y)| \leq 2\epsilon + |f(x) - f(y)|$. The last summand can be made arbitrarily small by imposing $|x - y| < \delta$ for sufficiently small δ.

d. Prove that if g is the uniform limit of a sequence $\{f_n\}$ of continuous functions then g is continuous.

Answer: By part c. the oscillation of g at every point is zero.

e. Give an example of a sequence of continuous functions on $[0, 1]$ which converges everywhere to a function f which is not continuous at $x = 1/2$. (The convergence clearly can’t be uniform)
Answer: For example: \(f_n(x) = |x - 1/2|^{1/n} \). \(f_n(1/2) = 0 \) for all \(n \) and at every other point \(\lim f_n(x) = 1 \)

19. Prove that the series \(\sum n^{-2} \cos nt \) converges uniformly for \(\infty < t < \infty \).

20. Let \(f \) be a bounded function on \([0, 1]\). Denote by \(U \) the set of all upper Darboux sums for \(f \) (relative to all finite partitions), and by \(L \) the set of all lower Darboux sums for \(f \) (relative to all finite partitions).
 a. Prove that \(\inf U \geq \sup L \).
 b. Assume that \(f \) is integrable, that is \(\inf U = \sup L = \int_0^1 f(x) \, dx \). Prove: \(\forall \epsilon > 0, \exists \delta > 0 \) such that if \(P \) is a partition of \([0, 1]\) whose mesh size is less than \(\delta \), and \(S \) is any Riemann sum associated with \(P \), then \(|S - \int_0^1 f(x) \, dx| < \epsilon \).
 c. Assume that \(o_f(x) < \epsilon \) for some fixed \(\epsilon > 0 \) and all \(x \in [0, 1] \). Prove that \(\inf U - \sup L \leq \epsilon \).

21. Let \(f_n \) be positive continuous functions on \([0, 1]\) and assume that the series \(\sum f_n(x) \) converges everywhere to an integrable function \(F \). Prove that

\[
(21.1) \quad \int_0^1 F(x) \, dx = \sum \int_0^1 f_n(x) \, dx.
\]

Hint: Since \(F(x) > \sum f_n(x) \) for all \(N \), we have \(\int_0^1 F(x) \, dx \geq \sum \int_0^1 f_n(x) \, dx \). It is the reverse inequality that needs addressing. Prove and use the fact that if \(F(x) > c \) for all \(x \) in some interval \([a, b] \), then there exists an integer \(N \) such that \(\sum f_n(x) > c \) everywhere on \([a, b]\).

22. Let \(f_n \) be positive continuous functions on \([0, 1]\) and assume that the series \(\sum f_n(x) \) converges everywhere to a continuous function \(F \). Prove that the convergence is uniform.

Hint: Use the compactness of \([0, 1]\) and the fact that if \(g \) is continuous, then for every real \(\lambda \), the set \(\{ x : g(x) > \lambda \} \) is open.

23. Assume \(f \in C^n([-1, 1]) \), and \(\sup_{|x| \leq 1} |f^{(n)}(x)| \leq 2^n \).
 a. Prove that \(f = \sum f^{(j)}(0) x^j \).
 b. What is the radius of convergence of the series \(\sum f^{(j)}(0) x^j \)?

24. Let \(f \) be infinitely differentiable on \([-1, 1] \), and assume that \(f^{(n)}(0) = 0 \) for all \(n \geq 0 \). Assume also that there exists an infinite sequence \(n_k \) such that \(|f^{(n_k)}(x)| \leq 3 \) for all \(x \in [-1, 1] \). Prove that \(f = 0 \) identically.

Hint: Taylor’s theorem (with remainder).

25. A sequence \(\{f_n\} \) (of real-valued functions on an interval \(I \)) is uniformly Cauchy if for all \(\epsilon > 0 \) there exists \(N = N(\epsilon) \) such that if \(n, m > N \) then \(|f_n(x) - f_m(x)| \leq \epsilon \) for all \(x \in I \).
Prove that a sequence \(\{f_n\} \) is uniformly Cauchy if, and only if, there exists a function \(f \) such that \(f_n \to f \) uniformly.

Answer: If \(f_n \to f \) uniformly then for every \(\varepsilon > 0 \) there exist \(N \) such that if \(n > N \) then \(|f_n(x) - f(x)| \leq \varepsilon/2 \) for all \(x \in I \). If both \(n > N \) and \(m > N \), then \(|f_n(x) - f_m(x)| \leq |f_n(x) - f(x)| + |f_m(x) - f(x)| \leq \varepsilon \) for all \(x \in I \).

Conversely, if \(\{f_n\} \) is uniformly Cauchy, it is Cauchy at every point and therefore converges pointwise to a well defined \(f \). We need to show that the convergence is uniform. Let \(\varepsilon > 0 \) and let \(N = N(\varepsilon) \) be such that if \(m, n > N \) then \(|f_n(x) - f_m(x)| \leq \varepsilon \) for all \(x \in I \). We have \(|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \leq \varepsilon \) for all \(x \) as soon as \(n > N(\varepsilon) \).

26. Let \(f \) be integrable on \([0, 1]\) and let \(\varepsilon > 0 \). Prove that there is a continuous function \(g \) on \([0, 1]\) such that \(g(x) \leq f(x) \) for all \(x \), and

\[
\varepsilon + \int_0^1 g(x)dx > \int_0^1 f(x)dx
\]

27. Assume that \(f \) is differentiable in \([a, b]\), \(f'(a) > 0 \), and \(f'(b) < 0 \). Prove that \(\max_{a \leq x \leq b} f'(x) \) is attained at a point \(c \) in \((a, b)\), and that \(f'(c) = 0 \). Extend this and show that derivatives of differentiable functions on an interval \(I \) have the intermediate value property: if \(c, d \in I \) then every value between \(f'(c) \) and \(f'(d) \), is assumed by \(f' \) somewhere between \(c \) and \(d \).

28. Let \(f \) be differentiable on \(\mathbb{R} \), and assume that \(\sup_{x \in \mathbb{R}} |f'(x)| = a < 1 \).

a. Select \(s_0 \in \mathbb{R} \) and define (recursively) \(s_{n+1} = f(s_n) \).

Prove that \(\{s_n\} \) is a convergent sequence.

b. Prove that \(s_\infty = \lim_{n \to \infty} s_n \) is a fixed point of \(f \), that is: \(f(s_\infty) = s_\infty \).

c. Prove that \(s_\infty \) is independent of the choice of \(s_0 \).

Hint: Show that there is only one fixed point for \(f \).

29. a. Let \(f \in C([a, b]) \) be differentiable. Assume that \(f(x_0) = f(x_1) = 0 \), \(a \leq x_0 < x_1 \leq b \). Prove that there exists \(y \in [x_0, x_1] \) such that \(f'(y) = 0 \).

b. Assume that \(f \in C^5([a, b]) \), that is: the successive derivatives \(f^{(j)} \) exist and are continuous for \(j = 1, \ldots, 5 \), and that \(f \) has at least 15 distinct zeros in the interval. Prove that the fifth derivative \(f^{(5)} \) has at least 10 zeros in the interval.

30. Let \(E \subset [0, 1] \) be infinite, and denote by \(L \) the set of all its limit points.

a. Prove that the set \(L \) is closed.

b. Prove that \(\sup L = \lim \sup E \).

Answer: Let \(y \) be a limit point of \(L \) and let \(\varepsilon > 0 \). The set \(L \cap (y - \varepsilon/2, y + \varepsilon/2) \) is non-empty (in fact, infinite). Let \(z \in L \cap (y - \varepsilon/2, y + \varepsilon/2) \).

The set \(E \cap (z - \varepsilon/2, z + \varepsilon/2) \) is infinite, and is contained in \(E \cap (y - \varepsilon, y + \varepsilon) \).
We have shown that $E \cap (y - \varepsilon, y + \varepsilon)$ is infinite for every $\varepsilon > 0$ so that $y \in L$. Thus, limit points of L are in L, and L is closed.

31. Let (X, ρ) be a metric space. The sets below are assumed to be subsets of X.

a. Prove that an arbitrary union of open sets is open.

b. Prove that a finite intersection of open sets is open.

c. Prove that a finite union of closed sets is closed.

d. Prove that an arbitrary intersection of closed sets is closed.

 Let E be a set and let $\{E_\alpha : \alpha \in \mathcal{A}\}$ be the collection of all the closed sets containing E. Then $\overline{E} = \cap E_\alpha$ is a closed set, containing E and in fact the smallest closed set containing E. It is called the closure of E.

 e. Prove that \overline{E} is the union of E with the set of all its limit points.

 Let E be a set and let $\{O_\alpha : \alpha \in \mathcal{A}\}$ be the collection of all the open sets contained in E. Then $E^o = \cup O_\alpha$ is an open set, contained in E and in fact the biggest open set contained in E. It is called the interior of E.

32. Prove that a compact metric space is totally bounded and complete. Prove also that a totally bounded complete metric space is compact.

33. Let $\{a_n\}$ be a monotone decreasing sequence of positive numbers and $\lim_{n \to \infty} a_n = 0$. Prove that $\sum_{1}^{\infty} (-1)^{n+1} a_n$ converges and show that its sum S satisfies $a_1 \geq S \geq a_1 - a_2$.

 Answer: Write $S_m = \sum_{1}^{m} (-1)^n a_n$. Then $S_{2m} - S_{2m-2} = a_{2m-1} - a_{2m} \geq 0$; in other words, the partial sums of even order form a monotone increasing sequence. Similarly, the partial sums of odd order form a monotone decreasing sequence. If k, l are arbitrary integers, take r bigger than either k or l and notice that

 $$S_{2k} \leq S_{2r} \leq S_{2r+1} \leq S_{2l+1}. $$

 Thus any partial sum of odd order is an upper bound for the partial sums of even order, and any partial sum of even order is a lower bound for the partial sums of odd order. It follows that both $S^* = \lim S_{2k+1}$ and $S^{**} = \lim S_{2k}$ exist, (bounded monotone sequences converge), and $S_{2n+1} \geq S^* \geq S^{**} \geq S_{2n}$ for every n. Let $\varepsilon > 0$ and let n be such that $a_n \leq \varepsilon$. Then $S^n - S^{**} \leq S_{2n+1} - S_{2n} \leq \varepsilon$ and we have $S^{**} = S^* = S$. We can now rewrite the inequality above as $S_{2m+1} \geq S \geq S_{2n}$; in particular $S_1 = a_1 \geq S \geq S_2 = a_1 - a_2$.

34. Assume $a_n \geq 0$ for all n and $\sum a_n < \infty$. Prove that $\sum \frac{\sqrt{a_n}}{n} < \infty$.

 Answer: By the Cauchy-Schwarz inequality, for any $N \in \mathbb{N}$ we have

 $$\sum_{1}^{N} \frac{\sqrt{a_n}}{n} \leq \left(\sum_{1}^{N} \frac{1}{n^2} \right)^{1/2} \left(\sum_{1}^{N} a_n \right)^{1/2} < \left(\sum_{1}^{\infty} \frac{1}{n^2} \right)^{1/2} \left(\sum_{1}^{\infty} a_n \right)^{1/2}. $$

 Since the partial sums form a bounded monotone sequence, the limit exists. Notice that the limit is bounded by the bound on the partial sums:

 $$\sum_{1}^{\infty} \frac{\sqrt{a_n}}{n} \leq \left(\sum_{1}^{\infty} \frac{1}{n^2} \right)^{1/2} \left(\sum_{1}^{\infty} a_n \right)^{1/2}. $$
35. Define \(s_n = \sum_{0}^{n} \frac{1}{j!} \), (remember that, by definition, \(0! = 1 \)), and \(t_n = (1 + \frac{1}{n})^n \). Prove the following statements

a. Prove that \(\sum_{0}^{\infty} \frac{1}{j!} = \lim_{n \to \infty} s_n \) exists and is < 3. (The sum is denoted \(e \), it is “the base of the natural logarithm”.)

Answer: Since \(j! \geq 2^{j-1} \) for \(j > 1 \) we have \(s_n \leq 2 + \sum_{1}^{n-1} 2^{-j} = 3 - 2^{1-n} \).

b. For all positive \(n, t_n \leq s_n \), yet, for every positive \(m \) there exists \(N(m) \) such that if \(n > N(m) \) then \(t_n \geq s_m \).

Answer: By the binomial expansion \(t_n = \sum_{0}^{n} \binom{n}{j} n^{-j} \). The first two terms are (each) equal to 1, for \(j > 1 \) we have \(\binom{n}{j} n^{-j} = \frac{n(n-1)\cdots(n-j+1)}{n^j} < \frac{1}{j!} \), and hence \(t_n \leq s_n \). On the other hand, for any fixed \(j \), and uniformly for \(j \leq m \), \(\binom{n}{j} n^{-j} \to 1 \) as \(n \to \infty \). It follows that for any \(\varepsilon > 0 \), the sum of the first \(m+1 \) terms in the sum expressing \(t_n \) exceeds \(s_m - \varepsilon \) when \(n \) is sufficiently large.

Take \(\varepsilon = \frac{1}{(2m)!} \) (small compared to the \((m+2)\) nd summand for \(t_n \)) and, for sufficiently large \(n \), we have \(t_n \geq s_m - \varepsilon + \frac{1}{2(2m+2)!} > s_m \).

c. \(\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \).

Answer: By a. we have \(\lim_{n \to \infty} t_n \leq \lim_{n \to \infty} s_n = e \).

By b. we have \(\lim_{n \to \infty} t_n \geq \lim_{m \to \infty} s_m = e \).

36. Let \((X, \rho) \) and \((Y, d) \) be metric spaces. Prove that a map \(f : X \to Y \) is continuous if and only if the inverse image \(f^{-1}(O) = \{x : f(x) \in O \} \) is open in \(X \) for every open set \(O \subset Y \).

37. Let \(f \) and \(g \) be continuous real-valued functions on \([0, 1]\).

Prove that the set \(\{(f(x), g(x)) : x \in [0.1] \} \) in \(\mathbb{R}^2 \) is connected and compact.

38. Let \(f \) be real valued on \(I = [0, 1] \);

a. Assume that \(o_f(x) \leq a \) for all \(x \in I \). Prove that for every \(a' > a \) there exists a \(\delta > 0 \) such that if \(x, y \in I \) and \(|x - y| < \delta \) then \(|f(x) - f(y)| < a' \).

Observe that, in the context above, \(U(f,P) - L(f,P) \leq a' \) for all partitions of mesh \(< \delta \).

b. Denote \(J(f, \varepsilon) = \{x : o_f(x) \geq \varepsilon \} \) and let \(C(f, \varepsilon, N) \) be the number of intervals of the form \([j/N, (j+1)/N], j \in \mathbb{N} \), that have a nonempty intersection with \(J(f, \varepsilon) \).

Prove that \(f \) is integrable if, and only if, \(\lim_{N \to \infty} \frac{C(f, \varepsilon, N)}{N} = 0 \) for all \(\varepsilon > 0 \).

39. Define \(l(x) = \int_{1}^{x} \frac{dy}{y} \).

a. Check that \(l(x) \) is well defined for all \(x > 0 \).

b. \(l(x) \) is strictly increasing, differentiable, tending to \(-\infty \) as \(x \to 0 \) and to \(+\infty \) as \(x \to \infty \).

c. \(l(ab) = l(a) + l(b) \) for all positive \(a, b \). In particular: \(l(1/e) = -l(x) \).
d. The inverse function of \(f \), denoted \(e(x) \), satisfies the functional equation \(e(a + b) = e(a)e(b) \).

e. \(e \) is differentiable and satisfies: \(e'(x) = e(x) \).

f. Prove that \(e(x) \), as defined here, satisfies: \(e(x) = \sum \frac{x^n}{n!} \).

40. Prove that an (everywhere) differentiable function \(f \) on a closed interval \([a, b]\) is bounded.

41. A closed set \(E \subset [0, 1] \) is non-dense (or nowhere dense) if its interior is empty, (that is: \(E \) contains no nonempty open set.) An arbitrary set \(E \subset [0, 1] \) is non-dense if its closure is non-dense (equivalently: if the interior of its complement is dense in \([0, 1]\)).

Prove that if \(E_n \) is non-dense for \(n = 1, 2, \ldots \), then \(\bigcup E_n \neq [0, 1] \).

42. Let \((s_n) \) be a sequence of real numbers. Define: \(\sigma_n = \frac{1}{n} \sum_{j=1}^{n} s_j \) (for \(n = 1, 2, \ldots \)).

a. Prove

\[
\lim \inf s_n \leq \lim \inf \sigma_n \leq \lim \sup \sigma_n \leq \lim \sup s_n.
\]

Answer: Given \(\varepsilon > 0 \), there exists \(N \) such that for \(n > N \)

\[
\lim \inf s_j - \varepsilon \leq s_n \leq \lim \sup s_j + \varepsilon.
\]

It follows that, for all \(m \),

\[
\frac{N}{m} \inf s_j + \frac{m-N}{m} \lim \inf s_j - \varepsilon \leq \frac{1}{m} \sum_{j=1}^{m} s_j \leq \frac{N}{m} \sup s_j + \frac{m-N}{m} \lim \sup s_j + \varepsilon.
\]

As \(m \to \infty \), \(\frac{N}{m} \to 0 \) and \(\frac{m-N}{m} \to 1 \); we obtain

\[
\lim \inf s_n - \varepsilon \leq \lim \inf \sigma_n \leq \lim \sup \sigma_n \leq \lim \sup s_n + \varepsilon.
\]

Since \(\varepsilon \) is arbitrary we obtain the desired inequality.

b. Prove that if \(\lim_{n \to \infty} s_n = a \) then \(\lim_{n \to \infty} \sigma_n = a \). Give an example of a sequence \(\{s_n\} \) which is not convergent but for which \(\lim \sigma_n \) exists.

Answer: If \(\lim \inf s_n = \lim \sup s_n = a \) then all the inequalities in (??) are in fact equalities and \(\lim \sigma_n = a \).

If \(a_n = (-1)^n \) then \(s_{2n} = 0 \), \(s_{2n+1} = -1 \) and \(\lim \sigma_n = -1/2 \).

43. For \(n \in \mathbb{N} \) let \(a_n \) be an integer in \([0, 1, \ldots, 9]\). Prove that the infinite decimal expansion, \(0.a_1a_2a_3 \ldots \) represents a unique real number in the following sense: the sequence \(x_n = \sum_{j=1}^{n} a_j 10^{-j} \) converges to a limit (denoted \(x = \sum_{j=1}^{\infty} a_j 10^{-j} \)). Conversely, prove that every number \(x \in (0, 1) \) has such representation(s).

44. Construction of a continuous nowhere differentiable function: Let \(a_n = 10^{-n} \). Observe that for every \(m \), \(\sum_{m+1}^{\infty} a_n < \frac{1}{8} a_m \). Let \(\lambda_n = (10n)! \) and define \(F \) by \(F(t) = \sum_{m=1}^{n} a_m \cos \lambda_m t \).
Claim: *F* is nowhere differentiable.

a. Write \(\Phi_m(t) = \sum_{n=1}^{m-1} a_n \cos \lambda_n t \) and verify that \(|\Phi'_m(t)| < \sum_{n<m} a_n \lambda_n < \lambda_{m-1} \).

Hence, for \(h \) such that \(|h| < 2\pi \lambda_{m-1}^{-1} \),

\[
(44.1) \quad \left| \Phi_m(t+h) - \Phi_m(t) \right| \leq 2\pi \lambda_{m-1} \lambda_{m-1}^{-1}
\]

b. Write \(\Psi_m(t) = \sum_{n=m+1}^{\infty} a_n \cos \lambda_n t \) and observe that \(|\Psi_m(t)| < \frac{1}{8} a_m \).

c. **Proof of the claim:** Let \(t \in \mathbb{R} \) be arbitrary; we show that \(F \) is not differentiable at \(t \).

If \(F(t) \geq 0 \) let \(x_m < t \) be the be the biggest such that \(\cos \lambda_m(t) = -1 \).

Observe that \(0 < t - x_m < 2\pi \lambda_{m-1}^{-1} \) so that

\[
F(t) - F(x_m) = \left(\Phi_m(t) - \Phi_m(x_m) \right) + \left(\Psi_m(t) - \Psi_m(x_m) \right) + \left(a_m \cos \lambda_m t - a_m \cos \lambda_m x_m \right)
\]

and since \(\cos \lambda_m x_m = -1 \) we have \(F(t) - F(x_m) \geq a_m - 2\pi \lambda_{m-1} \lambda_{m-1}^{-1} - a_m / 4 > a_m / 2 \) and

\[
(44.2) \quad \frac{F(t) - F(x_m)}{t - x_m} > \frac{a_m \lambda_m}{4\pi}
\]

Which goes to \(+\infty\) with \(m \).

If \(F(t) \leq 0 \) we take \(x_m > t \) be the smallest such that \(\cos \lambda_m(t) = 1 \).

45. A construction of an (everywhere) differentiable function that is nowhere monotone—its derivative takes both positive and negative values in every interval (and hence is not integrable).

Define \(\varphi(x) = \frac{1}{\sqrt{1+|x|}} \).

a. Prove that for all pairs \(a, b \in \mathbb{R}, \ a < b \), we have

\[
(45.1) \quad \frac{1}{b-a} \int_a^b \varphi(x) dx \leq 4 \min_{a \leq x \leq b} \varphi(x).
\]

Hint:

(a) Show that one may assume that \(b > |a| \).

(b) Show that if \(a > 0 \), \(\frac{1}{b-a} \int_a^b \varphi(x) dx \leq \frac{1}{b} \int_0^b \varphi(x) dx \), while if \(-b \leq a < 0\) then

\[
\frac{1}{b-a} \int_a^b \varphi(x) dx \leq \frac{2}{b} \int_0^b \varphi(x) dx.
\]

(c) Notice that \(m(b) = \min_{0 \leq x \leq b} \varphi(x) = \varphi(b) = \frac{1}{\sqrt{1+b}} \) while the average

\[
A(b) = \frac{1}{b} \int_0^b \varphi(x) dx = \frac{1}{2}(\sqrt{b} - b - 1).
\]

Show that the ratio \(A(b)/m(b) \) is monotone increasing, and converges to 2 as \(b \to \infty \).

b. Prove that inequality (45.1) remains valid if one replaces \(\varphi(x) \) by \(\varphi(\lambda(x-x_0)) \) where \(\lambda \) and \(x_0 \) are arbitrary real numbers.

c. Let \(a_n > 0, \ \lambda_n \) and \(x_n \) real numbers. Write \(\Phi_n(x) = \int_0^x \varphi(\lambda_n(y-x_n)) dy \).

Assume that the series \(\sum_n a_n \varphi(\lambda_n(x-x_n)) \) converges for some point \(x = \bar{x} \). Prove that \(\sum_n a_n \Phi_n(x) \) converges uniformly in every bounded set in \(\mathbb{R} \).

11 DECEMBER 4, 2009
d. Prove that $F(x) = \sum_1^\infty a_n \Phi_n(x)$ is differentiable at every point x at which $\sum_1^\infty a_n \varphi(\lambda_n(x - x_n))$ converges, and that $F'(x) = \sum_1^\infty a_n \varphi(\lambda_n(x - x_n))$ at these points. In particular, if the series $\sum_1^\infty a_n \varphi(\lambda_n(x - x_n))$ converges everywhere, F is differentiable everywhere.

e. Notice that if λ is large, $\varphi(\lambda(x - x_0))$ has a very sharp spike near x_0 and is quite small away from x_0. Use this to construct a function F which is differentiable everywhere, whose derivative is bounded, but is not integrable.

Hint: Show that for an appropriate choice of $\{a_n\}, a_n > 0, \{\lambda_n\}$ and $\{x_n\}$, the sum $f = \sum_1^\infty a_n \varphi(\lambda_n(x - x_n))$ satisfies:

(a) $f(0) < 1/2,$
(b) For any interval $I \subset [0, 1]$, we have $1 < \sup_{x \in I} f(x) < 2.$

Remark: Given two disjoint sequences $\{q_n\}$ and $\{r_n\}$, one can choose $\{\lambda_n\}, \{x_n\}$ and $\{a_n\}$ so that

$$\sum_1^\infty a_n \varphi(\lambda_n(x - x_n)) \begin{cases} 1 & \text{for } x \in \{q_n\} \\ < 1 & \text{for } x \in \{r_n\} \end{cases}.$$

Reversing the role of $\{q_n\}$ and $\{r_n\}$, repeating, and taking the difference, one can obtain an example of an everywhere differentiable function whose derivative is positive on $\{q_n\}$ and negative on $\{r_n\}$, even if both sequences are dense!