Math 115, midterm topics and sample problems

1. Prove that if \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{N}\), then \(a - b\) divides \(a^n - b^n\) (in \(\mathbb{Z}\)).

 Answer: By induction: clear for \(n = 1\) and \(n = 2\). Verify and use the equation
 \[a^{n+1} - b^{n+1} = (a + b)(a^n - b^n) - ab(a^{n-1} - b^{n-1})\]

2. Prove that for all \(n \in \mathbb{N}\),
 \[\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2\]

3. Prove that the completeness axiom for \(\mathbb{R}\) as stated in §4.4, namely:

 a. *Every nonempty subset \(S\) of \(\mathbb{R}\) that is bounded above has a least upper bound in \(\mathbb{R}\)*, (denoted \(\sup S\) or \(\text{lub} S\)).

 is equivalent to the statement

 b. *Every Cauchy sequence of real numbers has a limit in \(\mathbb{R}\).*

 Answer: We need to show that each statement implies the other

 \(a. \implies b.\) Assume the completeness axiom.

 Preparation: Observe that for a bounded monotone non-decreasing sequence \(y_n\) one has
 \[\lim y_n = \sup\{y_n\}\]
 (The sup exists by the Completeness axiom. By the definition of sup there exist, for any \(\varepsilon > 0\), values of \(N\) such that \(y_N > \sup\{y_n\} - \varepsilon\) and if \(n > N\) we have \(y_N \leq y_n \leq \sup\{y_n\}\).

 Similarly for a bounded monotone non-increasing sequence \(y_n\) one has \(\lim y_n = \inf\{y_n\}\). The completeness axiom now implies that every bounded monotone sequence \(y_n\) of real numbers has a (real number) limit.

 This implies the existence, for any bounded sequence \(\{x_n\}\), of the limits
 \[\limsup x_n = \lim_{m \to \infty} \sup_{n > m} x_n \quad \text{and} \quad \liminf x_n = \lim_{m \to \infty} \inf_{n > m} x_n.\]
 (since \(y_m = \sup_{n > m} x_n\) and \(z_m = \inf_{n > m} x_n\) are monotone and bounded.)

 Let \(\{x_n\} \subseteq \mathbb{R}\) be a Cauchy sequence; it is clearly bounded. Write \(S = \limsup x_n, s = \liminf x_n\) then \(S \geq s\) and we claim that in fact \(S = s\) so that \(\lim x_n = S\) and \(\{x_n\}\) has a limit in \(\mathbb{R}\). We show that \(S = s\) by showing that the opposite assumption in not consistent with the Cauchy condition on \(\{x_n\}\). Assume \(S - s > 0\) and set \(\varepsilon = \frac{s - S}{2}\); there are arbitrarily large values \(n, m\) such that \(x_n < s + \varepsilon\) and \(x_m > S - \varepsilon\) so that \(x_m - x_n > \varepsilon\), which contradicts the assumption that \(\{x_n\}\) is a Cauchy sequence.

 \(b. \implies a.\) Assume “Every Cauchy sequence of real numbers has a limit in \(\mathbb{R}\)”.

 Let \(A\) be a set which is bounded above, and let \(x_1\) be an upper bound. If \(x_1 = \sup A\) we are done. Otherwise let \(k\) be the smallest integer such that \(x_1 - \frac{1}{k}\) is an upper bound (for \(A\)) and set \(x_2 = x_1 - \frac{1}{k}\). Repeat, defining \(x_{n+1} = x_n - \frac{1}{k_n}\) where \(k_n\) is the smallest integer such that \(x_n - \frac{1}{k_n}\) is an upper bound for \(A\); (if at any stage \(x_n = \sup A\) we are done). The sequence \(\{x_n\}\) is bounded below (by \(A\)) so that \(\sum k_n^{-1} < \infty\).
4. Prove that \(\mathbb{R}^3 \) with the metric \(d(x,y) = \sqrt{\sum_{i=1}^{3}(x_i - y_i)^2} \) (where \(x = (x_1, x_2, x_3) \) and \(y = (y_1, y_2, y_3) \)) is complete: every Cauchy sequence in \(\mathbb{R}^3 \) has a limit.

Answer: The sequence \(\{w_n\}, w_n = (x_n, y_n, z_n) \), is a Cauchy sequence in \(\mathbb{R}^3 \) if and only if each of the sequences \(\{x_n\} \{y_n\} \{z_n\} \) is a Cauchy sequence in \(\mathbb{R} \). Thus, if \(\{w_n\} \) is a Cauchy sequence then the limits \(X = \lim_{n\to\infty} x_n, Y = \lim_{n\to\infty} y_n, \) and \(Z = \lim_{n\to\infty} z_n \) exist and since all three coordinates in \((X,Y,Z) - w_n \) converge to zero we have

\[
(X,Y,Z) = \lim_{n\to\infty} w_n.
\]

Notation and terminology: Let \(E \subset \mathbb{R} \),

- \(x \in E \) is an isolated point of \(E \) if there exists \(\varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \cap E = \{x\} \).
- \(x \in E \) is a limit point of \(E \) if for every \(\varepsilon > 0 \) the set \((x - \varepsilon, x + \varepsilon) \cap E \) is infinite.

The set \(E \) is closed if it contains all its limit points.

A set \(E \) is open if its complement is closed.

5. Prove that a set \(E \) is open if and only if for all \(x \in E \) there exists \(\varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \subset E \).

Give an example of a set which is neither open nor closed.

6. Show that \(x \in E \) is an limit point of \(E \) if for every \(\varepsilon > 0 \) the set \((x - \varepsilon, x + \varepsilon) \cap E \) contains at least one point different from \(x \).

7. Let \(E \) be a bounded closed set on \(\mathbb{R} \). Prove that \(\sup E \in E \). In other words: \(\sup E = \max E \).

Hint: The complement of a closed set is open.

8. Let \(E \subset [0, 1] \) be infinite. Prove that the set \(L \) of all the limit points of \(E \) is non-empty and closed.

Answer: Let \(y \) be a limit point of \(L \) and let \(\varepsilon > 0 \). The set \(L \cap (y - \varepsilon/2, y + \varepsilon/2) \) is not empty. Let \(z \in L \cap (y - \varepsilon/2, y + \varepsilon/2) \). The set \(E \cap (z - \varepsilon/2, z + \varepsilon/2) \) is not empty. Let \(x \in E \cap (z - \varepsilon/2, z + \varepsilon/2) \); we have \(|x - y| < \varepsilon \). This shows that \(E \cap (y - \varepsilon, y + \varepsilon) \) is not empty for every \(\varepsilon > 0 \), that is \(y \) is a limit point of \(E \). In other words \(y \in L \) and we have shown that limit points of \(L \) are in \(L \), so \(L \) is closed.

9. a. Given a bounded sequence \(\{a_n\} \) of real numbers.

Prove that \(A = \limsup a_n \) (defined by: \(\limsup a_n = \lim_{N \to \infty} \sup_{n \geq N} a_n \)) is the unique real number that has the property:

P: For every \(\varepsilon > 0 \), the set \(\{n : a_n > A + \varepsilon\} \) is finite while the set \(\{n : a_n < A - \varepsilon\} \) is infinite.

Answer: Since, for every \(\varepsilon > 0, A + \varepsilon > \lim_{N \to \infty} \sup_{n \geq N} a_n \), there exists \(M \) such that \(A + \varepsilon > \sup_{n \geq M} a_n \). That means that only elements with index \(< M \) can exceed \(A + \varepsilon \).

On the other hand, \(A - \varepsilon < \lim_{N \to \infty} \sup_{n \geq N} a_n \) and since \(\{b_N = \sup_{n \geq N} a_n\} \) is non-increasing (as a sequence indexed by \(N \)) we have \(A - \varepsilon < \sup_{n \geq N} a_n \) for every \(N \), and there can be no last index in the set \(\{a_n : a_n > A - \varepsilon\} \).
10. For every \(a_n \geq A + \varepsilon \) then \(B - \varepsilon = A + \varepsilon \), so that the set \(\{ n : a_n > A + \varepsilon \} = \{ n : a_n > B - \varepsilon \} \) is finite, and \(B \) does not have property \(\mathcal{P} \). If \(B < A \) and \(B \) has property \(\mathcal{P} \) then the argument given shows that \(A \) cannot have it.

b. For an infinite bounded set \(E \subset \mathbb{R} \) define: \(\limsup E = \sup \{ x : x \text{ is a limit point of } E \} \). Prove that \(A = \lim sup E \) if and only if it has the analog of property \(\mathcal{P} \), namely: for every \(\varepsilon > 0 \), the set \(E \cap [A + \varepsilon, +\infty) \) is finite, while \(E \cap [A - \varepsilon, +\infty) \) is infinite.

For \(n \in \mathbb{N} \) let \(a_n \) be an integer in \([0,1,\ldots,9]\). Prove that the infinite decimal expansion, \(0.a_1a_2a_3 \ldots \), represents a unique real number \(\alpha \) in the following sense: the sequence \(x_n = \sum_{j=1}^{n} a_j 10^{-j} \) converges to a limit (denoted \(\alpha = \sum_{j=1}^{\infty} a_j 10^{-j} \)). Conversely, prove that every number \(\alpha \in (0,1) \) has such representation(s).

Answer:

a. For every choice of the coefficients \(a_j \), the sequence \(x_n = \sum_{j=1}^{n} a_j 10^{-j} \) is a Cauchy sequence, hence convergent. The Cauchy condition is satisfied since for \(m > n \),

\[
|x_m - x_n| = \sum_{n+1}^{m} a_j 10^{-j} \leq 9 \cdot 10^{-n},
\]

which goes to zero as \(n \to \infty \).

b. Given \(x \in (0,1) \) we define the coefficients \(a_n \) inductively: \(a_1 = \lfloor 10x \rfloor \), \(\lfloor y \rfloor \) denotes the integer part of \(y \), that is the biggest integer smaller than or equal to \(y \); check that \(0 \leq x - a_1 10^{-1} < 10^{-1} \). Assume that \(a_j \) has been defined for \(j \leq n \) and that \(0 \leq x - x_n < 10^{-n} \) where \(x_n = \sum_{j=1}^{n} a_j 10^{-j} \); then set \(a_{n+1} = \lfloor 10^{n+1} (x - x_n) \rfloor \).

c. What numbers have terminating decimal expansions and which have ultimately periodic ones?

Answer: Numbers with terminating decimal expansions are clearly rationals that can be written as \(p10^{-n} \) with \(p \) and \(n \) integers. Rational numbers and only rational numbers have ultimately periodic expansions (see Theorem 16.5, page 84, in the textbook).

11. Prove or disprove (by giving a counter-example) each of the following statements: (the sequences \{\(a_n \}\} and \{\(b_n \}\} are assumed to be bounded sequences of real numbers)

a. \(\limsup(a_n + b_n) \leq \limsup a_n + \limsup b_n \).

b. \(\limsup a_n b_n \leq \limsup a_n \limsup b_n \).

c. \(\liminf(a_n + b_n) \leq \liminf a_n + \liminf b_n \).

d. \(\liminf(a_n + b_n) \geq \liminf a_n + \liminf b_n \).

Answer:

a. True: For every \(\varepsilon > 0 \), appropriate \(N \) and \(j > N \), \(a_j < \limsup a_n + \varepsilon \), \(b_j < \limsup b_n + \varepsilon \) so that \(a_j + b_j < \limsup a_n + \limsup b_n + 2\varepsilon \).
b. False (unless, e.g., both sequences are positive): \(a_n = 1 + (-1)^n \) and \(b_n = -1 \). Then \(\limsup a_n = 2, \limsup b_n = -1 \) so their product is \(-2\) while \(\limsup a_n b_n = 0 \). of the limits

c. False: \(a_n = 1 + (-1)^n, \ b_n = 1 - (-1)^n \). We have \(\liminf a_n = \liminf b_n = 0 \), while \(\liminf(a_n + b_n) = 1 \).

d. True. This is a. in which everything is multiplied by \(-1\).

12. Let \(f \) be continuous on \([0, 1]\). Prove:
 a. \(f \) is bounded on \([0, 1]\).
 b. \(f \) is uniformly continuous on \([0, 1]\).

13. Let \((s_n) \) be a sequence of real numbers. Define: \(\sigma_n = \frac{1}{n} \sum_{j=1}^{n} s_j \) (for \(n = 1, 2, \ldots \)).
 a. Prove: \(\liminf s_n \leq \liminf \sigma_n \leq \limsup \sigma_n \leq \limsup s_n \).

 Answer: Given \(\varepsilon > 0 \), there exists \(N \) such that for \(n > N \)
 \[\liminf s_j - \varepsilon \leq s_n \leq \limsup s_j + \varepsilon. \]

 It follows that, for all \(m \),
 \[\frac{N}{m} \inf s_j + \frac{m-N}{m} \liminf s_j - \varepsilon \leq \frac{1}{m} \sum_{j=1}^{m} s_j \leq \frac{N}{m} \sup s_j + \frac{m-N}{m} \limsup s_j + \varepsilon. \]

 As \(m \to \infty \), \(\frac{N}{m} \to 0 \) and \(\frac{m-N}{m} \to 1 \); we obtain
 \[\liminf s_n - \varepsilon \leq \liminf \sigma_n \leq \limsup \sigma_n \leq \limsup s_n + \varepsilon. \]

 Since \(\varepsilon \) is arbitrary we obtain the desired inequality.

 b. Prove that if \(\lim_{n \to \infty} s_n = a \) then \(\lim_{n \to \infty} \sigma_n = a \).

 Answer: If \(\liminf s_n = \limsup s_n = a \) then all the inequalities in (??) are in fact equalities and \(\lim \sigma_n = a \).

 c. Give an example of a sequence \(\{s_n\} \) which is not convergent but for which \(\lim \sigma_n \) exists.

 Answer: If \(a_n = (-1)^n \) then \(s_{2n} = 0, s_{2n+1} = -1 \) and \(\lim \sigma_n = -1/2 \).

14. Let \(\{a_n\} \) be a monotone decreasing sequence of positive numbers such that \(\lim_{n \to \infty} a_n = 0 \).
 Prove that \(\sum_{n=1}^{\infty} (-1)^{n+1} a_n \) converges and show that its sum \(S \) satisfies \(a_1 \geq S \geq a_1 - a_2 \).

 Answer: Write \(S_m = \sum_{n=1}^{m} (-1)^{n+1} a_n \). Then \(S_{2m} - S_{2m-2} = a_{2m-1} - a_{2m} \geq 0 \); in other words, the
 partial sums of even order form a monotone increasing sequence. Similarly, the partial sums of odd order form a monotone decreasing sequence. If \(k, l \) are arbitrary integers, take \(r \) bigger than either \(k \) or \(l \) and notice that
 \[S_{2k} \leq S_{2r} \leq S_{2r+1} \leq S_{2l+1}. \]
Thus any partial sum of odd order is an upper bound for the partial sums of even order, and any partial sum of even order is a lower bound for the partial sums of odd order. It follows that both \(S^* = \lim S_{2k+1} \) and \(S^{**} = \lim S_{2k} \) exist, (bounded monotone sequences converge), and \(S_{2n+1} \geq S^* \geq S^{**} \geq S_{2n} \) for every \(n \). Let \(\varepsilon > 0 \) and let \(n \) be such that \(a_n \leq \varepsilon \). Then \(S^* - S^{**} \leq S_{2n+1} - S_{2n} \leq \varepsilon \) and we have \(S^{**} = S^* = S \). We can now rewrite the inequality above as \(S_{2m+1} \geq S \geq S_{2n} \); in particular \(S_1 = a_1 \geq S \geq S_2 = a_1 - a_2 \).

15. Assume \(a > 0, p \) an arbitrary real number. Prove: \(\lim_{n \to \infty} n^p (1+a)^{-n} = 0 \).

16. Define \(s_n = n^p \sum_{j=1}^{n} 1/j! \). (remember that, by definition, \(0! = 1 \)), and \(t_n = (1 + \frac{1}{n})^n \). Prove the following statements
 a. Prove that \(\sum_{n=0}^{\infty} n^n \) exists and is \(< 3 \). (The sum is standardly denoted \(e \), it is “the base of the natural logarithm”.)
 b. For all positive \(n, t_n \leq s_n \), yet, for every positive \(m \) there exists \(N(m) \) such that if \(n > N(m) \) then \(t_n = n \).
 c. \(\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \).

17. a. For what values of \(p \) is the series \(\sum_{n=1}^{\infty} n^{-p} \) convergent.
 b. For what pairs \(p, q \) is the series \(\sum_{n=2}^{\infty} n^{-p} \log^q n \) convergent.

18. Assume \(a > 0, p \) an arbitrary real number. Prove: \(\lim_{n \to \infty} n^p (1+a)^{-n} = 0 \).
 Answer: By the binomial expansion, \((1 + a)^n > (\frac{n}{k}) a^k \) when \(n > k \). Take \(k > p + 1 \) and remember \(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \) so that for the constant \(C = a^{-k} 2^k! \) and \(n > 2k \) we have \((1 + a)^n > C^{-1} n^k \) and \(n^p (1+a)^{-n} < Cn^{p-k} < \frac{C}{n} \) which converges to zero.

19. Assume \(a_n \geq 0 \) for all \(n \) and \(\sum a_n < \infty \). Prove that \(\sum \frac{a_n}{n} < \infty \).
 Answer: By the Cauchy-Schwarz inequality, for any \(N \in \mathbb{N} \) we have
 \[
 \sum_{n=1}^{N} \frac{\sqrt{a_n}}{n} \leq \left(\sum_{n=1}^{N} n^{-2} \right)^{1/2} \left(\sum_{n=1}^{N} a_n \right)^{1/2} < \left(\sum_{n=1}^{\infty} n^{-2} \right)^{1/2} \left(\sum_{n=1}^{\infty} a_n \right)^{1/2}.
 \]
 Since the partial sums form a bounded monotone sequence, the limit exists. Notice that the limit is bounded by the bound on the partial sums:
 \[
 \sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \leq \left(\sum_{n=1}^{\infty} n^{-2} \right)^{1/2} \left(\sum_{n=1}^{\infty} a_n \right)^{1/2}.
 \]

20. Let \(f \) be a real-valued function defined in the interval \([a, b] \subset \mathbb{R} \). Define
 \[
 \limsup_{x \to c} f(x) = \lim_{\delta \to 0} \sup_{c - \delta \leq x \leq c + \delta} f(x) \quad \liminf_{x \to c} f(x) = \lim_{\delta \to 0} \inf_{c - \delta \leq x \leq c + \delta} f(x).
 \]
The oscillation of a function f at a point c in its domain is defined by

$$o_c(f) = \limsup_{x \to c} f(x) - \liminf_{x \to c} f(x).$$

Another way to define the oscillation is: $o_c(f) = \sup A$, the supremum over all the real numbers A such that for all $\delta > 0$, there exist points $x, y \in (c - \delta, c + \delta)$ with $|f(x) - f(y)| > A$.

a. Prove that the two definitions agree.

Answer: We need to show that

$$\lim_{\delta \to 0} \sup_{x, y \in (c - \delta, c + \delta)} |f(x) - f(y)| = \limsup_{x \to c} f(x) - \liminf_{x \to c} f(x).$$

By the definition of lim sup and lim inf, for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - c| < \delta$ then

$$\liminf_{x \to c} f(x) - \varepsilon < f(x) < \limsup_{x \to c} f(x) + \varepsilon.$$

It follows that if $x, y \in (c - \delta, c + \delta)$ then $|f(x) - f(y)| < o_c(f) + 2\varepsilon$, and since ε is arbitrarily small, we obtain

$$\lim_{\delta \to 0} \sup_{x, y \in (c - \delta, c + \delta)} |f(x) - f(y)| \leq \limsup_{x \to c} f(x) - \liminf_{x \to c} f(x).$$

Again by the definition of lim sup and lim inf, for any $\varepsilon > 0$ and any $\delta > 0$, there exist $\tilde{x}, \tilde{y} \in (c - \delta, c + \delta)$ with $f(\tilde{x}) > \limsup_{x \to c} f(x) - \varepsilon$ and $f(\tilde{y}) < \liminf_{x \to c} f(x) + \varepsilon$. It follows that $f(\tilde{x}) - f(\tilde{y}) > o_c(f) - 2\varepsilon$, i.e.,

$$\lim_{\delta \to 0} \sup_{x, y \in (c - \delta, c + \delta)} |f(x) - f(y)| \geq \limsup_{x \to c} f(x) - \liminf_{x \to c} f(x) - 2\varepsilon,$$

and since $\varepsilon > 0$ is arbitrary, the two definitions agree.

b. Prove that for any real-valued f and any constant B, the set $\{c : o_c(f) \geq B\}$ is closed.

Answer: If y is a limit point of $\{c : o_c(f) \geq B\}$, any neighborhood $(y - \delta, y + \delta)$ contains points c such that $o_c(f) \geq B$. For any $\varepsilon > 0$ and $\delta > 0$, there exist pairs \tilde{x}, \tilde{y} in $(c - \delta, c + \delta) \subset (y - 2\delta, y + 2\delta)$ such that $f(\tilde{x}) - f(\tilde{y}) > o_c(f) - \varepsilon$. Since $\varepsilon > 0$ and $\delta > 0$ are arbitrary, we obtain $o_y(f) \geq B$ and y belongs to the set.

c. Prove that if f, g are real-valued functions, g continuous and $|f(x) - g(x)| \leq \varepsilon$ for all x, then (the oscillation) $o_c(f) \leq 2\varepsilon$ for all c.

d. Assume that $f_n, n \in \mathbb{N}$, are continuous real-valued functions on $[0, 1]$, f is a function defined on $[0, 1]$, and $\lim_{n \to \infty} \sup_{0 \leq x \leq 1} |f_n(x) - f(x)| = 0$, (this condition is what is usually referred to as “f_n converge to f uniformly”). Prove that f is continuous everywhere on $[0, 1]$.

Answer: Let $c \in [0, 1]$, and let $\varepsilon > 0$ be arbitrary. Let n be such that $|f(x) - f_n(x)| \leq \varepsilon$ for all x. By the previous part (with $g = f_n$), $o_c(f) \leq 2\varepsilon$. It follows that $o_c(f)$ is identically zero, i.e., f is continuous.
e. Give an example of a sequence of continuous functions on \([0, 1]\) which converges everywhere to a function \(f\) which is not continuous at \(x = 1/2\). (The convergence clearly can’t be uniform)

Answer: For example: \(f_n(x) = |x - 1/2|^{1/n}\). \(f_n(1/2) = 0\) for all \(n\) and at every other point \(\lim\ f_n(x) = 1\)