2. Limits and convergence.

ex2.4.7. Let f be a continuous function defined on a compact metric space. Use the characterization given in the previous exercise to prove that the range of f is compact.

ex2.4.8. The range of a continuous map from a compact metric space into a metric space is compact.

ex2.4.9. A uniformly continuous function f on $[0, 1]$ maps Cauchy sequences to Cauchy sequences.

ex2.4.10. Let $f = (f_1, \ldots, f_d)$ be an \mathbb{R}^d-valued function on (X, ρ).

a. Prove that f is continuous at a point $x_0 \in X$ if and only if every “component function” f_j, $j = 1, \ldots, d$, is continuous at x_0.

b. Prove that f is uniformly continuous on X if and only if every “component function” f_j, $j = 1, \ldots, d$, is uniformly continuous.

2.4.6 Equicontinuity. Let \mathcal{F} be a set of continuous real-valued functions defined on a metric space (X, ρ).

Definition: \mathcal{F} is **equicontinuous at a point** $x \in X$ if for every $\epsilon > 0$ there exist $\delta = \delta(x, \epsilon)$ such that if $y \in B(x, \delta)$ then for every $f \in \mathcal{F}$, $|f(y) - f(x)| < \epsilon$.

\mathcal{F} is **equicontinuous on** X if it is equicontinuous at every $x \in X$.

2.5 Connectedness

2.5.1 Definition: A metric space (X, ρ) is **connected** if it is not the union of two disjoint nonempty closed subsets.

Since the complement of an open set is closed and the complement of a closed set is open, we can define connectedness by:

(X, ρ) is **connected** if it is not the union of two disjoint nonempty open subsets.

Proposition. An interval $I \subset \mathbb{R}$ is connected.

Proof: Proof by contradiction. We consider first the case that $I = [a, b]$ is bounded and closed. Assume $I = E_1 \cup E_2$, with E_1 and E_2 nonempty and closed, numbered so that $a \in E_1$.

Write $c = \inf E_2$. As $[a, c) \subset E_1$, c is a limit point of E_1 and, as E_1 is closed, we have $c \in E_1$.

November 1, 2009
On the other hand, being the infimum of the closed set E_2 we have $c \in E_2$, contradicting the assumption that E_1 and E_2 are disjoint.

For a general interval J, that may be open, half open, unbounded, we assume $J = E'_1 \cup E'_2$ with E'_j nonempty, closed and disjoint, take $a \in E'_1$, $b \in E'_2$, write $I = [a, b], E_j = E'_j \cap I$, and apply the case where $I = [a, b]$ is bounded and closed.

Theorem. A continuous real-valued function defined on a connected space X (e.g. on $[0, 1]$) has the intermediate value property, that is, if $x_0, x_0 \in X$, $f(x_0) = a \neq f(x_1) = b$ and $a < c < b$, then there is $y \in X$ such that $f(y) = c$.

ex2.5.1. A closed subset $E \subset \mathbb{R}$ is connected if and only if it is an interval. The interval can be bounded or extend to $+\infty$, or to $-\infty$ or to both.

ex2.5.2. An interval is characterized (among the subsets of \mathbb{R}) by the property: if a and b are points in it and $a < c < b$ then c is in it as well.

ex2.5.3. The range of a real-valued continuous function on a connected metric space is an interval.

ex2.5.4. The range of a continuous map from a connected metric space into a metric space is connected.

2.6 Series of functions

2.6.1 Pointwise convergence.

We now consider sequences and series of (real-valued) functions defined on a finite interval, say on $[0, 1]$, or, more generally, on a metric space (X, ρ).

The convergence of such a sequence or a series at a point x_0 is the convergence of a sequence or of a series of real numbers, which was studied earlier. Here we consider the **Pointwise convergence** of a sequence (or a series) of continuous functions, and the **uniform convergence** of such. Since the convergence of a series is defined by the convergence of the sequence of its partial sums (or, in the case of summability, of averages thereof) we focus on sequences.

Definition: The sequence $\{f_n\}$ converges **pointwise** on $[0, 1]$ if it converges at every point in the interval.
2. Limits and convergence.

We know that for real-valued functions convergence at a point \(x_0 \)
is equivalent to the sequence \(\{f_n(x_0)\} \) being a Cauchy sequence, i.e.,
\[
\forall \varepsilon > 0, \exists N = N(\varepsilon, x_0) \text{ such that if } n, m > N \text{ then } |f_n(x_0) - f_m(x_0)| < \varepsilon.
\]
The sequence converges pointwise if the condition is satisfied for every \(x_0 \in [0, 1] \).

2.6.2 Uniform convergence. In the context and notation of the previous subsection, assume that \(\{f_n(x)\} \) converges to \(f(x) \) everywhere
on \([0, 1] \).

Definition: The sequence \(\{f_n\} \) converges to \(f \) uniformly means:
\[
\forall \varepsilon > 0, \exists N = N(\varepsilon) \text{ such that if } x \in [0, 1] \text{ and } n > N.
\]
The uniformity is the fact that, for all \(\varepsilon > 0 \), there is a common \(N(\varepsilon) \)
which accommodates all the points \(x \in [0, 1] \).

Example: Consider an infinite series \(\sum_{n=0}^{\infty} g_n(x) \), the functions \(g_n \)
defined on \([0, 1] \) and satisfy \(|g_n(x)| \leq c_n \) with constants \(c_n \) such that \(\sum c_n \)
converges. Then the series \(\sum g_n \) converges uniformly (and absolutely).

Theorem. a. The sequence \(\{f_n\} \) converges uniformly on \([0, 1] \) if, and only if it is uniformly Cauchy, i.e., \(\forall \varepsilon > 0, \exists N = N(\varepsilon) \text{ such that for all } x \in [0, 1], \text{ if } n, m > N \text{ then } |f_n(x) - f_m(x)| < \varepsilon. \)

b. A uniform limit of a sequence \(\{f_n\} \) of continuous functions is continuous.

Proof: a. Assume that the sequence \(\{f_n\} \) converges uniformly on \([0, 1] \), and denote the limit function by \(f \). Then \(\forall \varepsilon > 0, \exists N = N(\varepsilon) \)
such that if \(n > N \) then, for all \(x \in [0, 1] \), we have \(|f_n(x) - f(x)| < \varepsilon/2. \)
If \(m > N \) then \(|f_m(x) - f(x)| < \varepsilon/2 \) for all \(x \in [0, 1] \), so that if both \(n, m > N, |f_n(x) - f_m(x)| < \varepsilon \), and \(\{f_n\} \) is uniformly Cauchy.

Conversely, assume that \(\{f_n\} \) is uniformly Cauchy. We know that the sequence converges pointwise. Denote \(f(x) = \lim_{n \to \infty} f_n(x) \); we claim that the convergence is uniform.

The sequence \(\{f_n\} \) being uniformly Cauchy means the following:
\(\forall \varepsilon > 0, \exists N = N(\varepsilon) \) such that \(|f_n(x) - f_m(x)| < \varepsilon \) for all \(x \) provided \(m, n > N \). Fixing \(m > N \) and taking the limit as \(n \to \infty \), the estimate becomes \(|f(x) - f_m(x)| < \varepsilon \), i.e., \(f_n \to f \) uniformly.

November 1, 2009
b. Assume \(f(x) = \lim_{n \to \infty} f_n(x) \), the convergence uniform. The continuity of \(f \) is obtained by showing that \(o_f(x_0) = 0 \) for every \(x_0 \), making use of the following observation he proof of which is left as an exercise:

If \(g \) is continuous on \([0, 1]\) and \(|g(x) - f(x)| < \varepsilon \) for all \(x \in E \). Then \(o_f(x) < 2\varepsilon \) for all \(x \in [0, 1] \).

For every \(\varepsilon > 0 \) there exists \(n \) such that \(|f_n(x) - f(x)| < \varepsilon \) for all \(x \), which implies \((f_n \) plays the role of \(g \) above) \(o_f(x) < 2\varepsilon \) for all \(x \in [0, 1] \).
Since \(\varepsilon > 0 \) is arbitrary we obtain \(o_f(x) = 0 \), and \(f \) is continuous at every \(x \in [0, 1] \).

2.6.1. Assume \(g \) continuous on \(E \) and \(|g(x) - f(x)| < \varepsilon \) for all \(x \in E \). Prove: \(o_f(x) < 2\varepsilon \) for all \(x \in E \).

2.6.2. Let \(\varphi_n \) be real-valued functions defined on a set \(E \). Assume that \(|\varphi_n(x)| \leq b_n \) for all \(x \in E \), and assume that \(\sum b_n < \infty \). Prove that \(\sum \varphi_n(x) \) converges uniformly on \(E \).

2.6.3 Equicontinuity A set \(\{f_n\} \) of real-valued functions on \([0, 1]\) is equicontinuous at a point \(x_0 \) if for every \(\varepsilon > 0 \) the exists \(\delta(\varepsilon) > 0 \) such that if \(|x_0 - y| < \delta \) then \(|f_n(x_0) - f_n(y)| < \varepsilon \) for all \(n \).

\(\{f_n\} \) is uniformly equicontinuous if for every \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) such that if \(|x - y| < \delta \) then \(|f_n(x) - f_n(y)| < \varepsilon \) for all \(n \) and for all \(x \).

The uniform continuity of a function is the fact that \(\delta(\varepsilon) \) can be chosen so as to accommodate all \(x \) for the given function. The equicontinuity is the fact that \(\delta(\varepsilon) \) can be chosen to accommodate all the functions \(f_n \) (either at a specific point or at every point).

2.7 Power Series

Power series are series of the form

\[
\sum_{n=0}^{\infty} a_n x^n.
\]

Recall that by definition \(x^0 = 1 \). The (real) numbers \(a_n \) are the coefficients of the series. The series certainly converge for \(x = 0 \); it may or may not converge elsewhere, and we shall be interested only in the case it does.

November 1, 2009
2. Limits and convergence.

2.7.1 Convergence.

The domain of convergence of a power series \(\sum_{0}^{\infty} a_n x^n \) is given by the following parameter, called the radius of convergence:

\[
R = (\limsup |a_n|^{1/n})^{-1}.
\]

Theorem. If \(R = 0 \) then the series converges at the only point \(x = 0 \).
If \(R > 0 \) then the series converges for all \(x \in (-R, R) \) and uniformly so on every interval \([-r, r] \) where \(r < R \). The series may or may not converge at the points \(x = R \) and \(x = -R \).

Proof: By its definition, \(R = \limsup \{ c : |a_n c^n| = O(1) \} \). If \(|x| > R \) then the terms \(a_n x^n \) are not bounded and the series does not converge. In particular, if \(R = 0 \) the same holds for any \(x \neq 0 \).

If \(R > 0 \) and \(r < c < R \) then \(|a_n c^n| \) is bounded, say \(|a_n c^n| < B \) for all \(n \in \mathbb{N} \). Now, \(|a_n r^n| \leq B (\frac{r}{c})^n \), and the uniform convergence for \(x \in [-r, r] \) is given by comparison to the geometric series.

2.7.2 Products of power series.

Proposition. Let \(\sum_{0}^{\infty} a_n = A \) and \(\sum_{0}^{\infty} b_n = B \) be absolutely convergent. Define \(c_n = \sum_{j+k=n} a_j b_k \). The series \(\sum_{0}^{\infty} c_n \) is absolutely convergent to sum \(AB \).

See subsection 2.3.6.

Let \(\sum a_n x^n \) and \(\sum b_n x^n \) be power series with positive radii of convergence \(R_a \) and \(R_b \) respectively. Let \(R = \min(R_a, R_b) \) and denote \(f(x) = \sum a_n x^n \) and \(g(x) = \sum b_n x^n \) in the respective domains of convergence, and in particular for \(|x| < R \). Denote \(c_n = \sum_{k+l=n} a_k b_l \).

Theorem. The radius of convergence of the series \(\sum c_n x^n \) is \(\geq R \), and, for \(x \in \{ x : |x| < R \} \),

\[
(2.7.2) \quad F(x) = \sum c_n x^n = f(x)g(x).
\]

Proof: This is an immediate application of the proposition.

November 1, 2009
2.7.3 **Abel summability.** Given an infinite series of real numbers \(\sum_{n=0}^{\infty} a_n \), we consider the power series \(\sum_{n=0}^{\infty} a_n x^n \) and, assuming that the radius of convergence is at least 1, would like to understand the relation between the existence and the value of the limit \(\lim_{x \to 1^{-}} f(x) \) on the one hand and the convergence and the sum of \(\sum a_n \) on the other.

A theorem of Abel, below, states that if the series converges, and its sum is \(S \) then \(\lim_{x \to 1^{-}} f(x) = S \). On the other hand there exist series that do not converge but for which the limit \(\lim_{x \to 1^{-}} f(x) \) exists. We say that the series is Abel-summable to the value \(\lim_{x \to 1^{-}} f(x) \).

Theorem (Abel). Assume the series \(\sum_{n=0}^{\infty} a_n \) convergent. Then the function \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) converges, as \(x \to 1 \), to \(S = \sum_{n=0}^{\infty} a_n \).

Proof: Denote \(s_n = \sum_{n=0}^{n} a_j \) and \(s_n(x) = \sum_{n=0}^{n} a_j x^j \). The assumption is that \(s_n \to S \) as \(n \to \infty \). Now, if \(0 < x < 1 \)

\[
(2.7.3) \quad f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{N} (s_j - s_{j-1}) x^j = \sum_{j=0}^{N} (s_j x^j - s_{j+1} x^j).
\]

Observe that \(x^j - x^{j+1} = x^j (1-x) > 0 \) and \(\sum x^j (1-x) = 1 \) so that \(f(x) \) is a **weighted average** of \(s_j \) with weights \(x^j (1-x) \). Now

\[
(2.7.4) \quad |f(x) - S| \leq \sum_{n=0}^{N} x^j (1-x) |s_j - S|.
\]

Denote \(S = 1 + \sup |s_n| \). Given \(\varepsilon > 0 \), let \(N = N(\varepsilon) \) be such that \(|s_n - S| < \varepsilon / 2 \) for \(n \geq N \).

With \(\varepsilon \) and \(N \) fixed there exists \(x_0 < 1 \) such that for \(x > x_0 \) we have

\[
\sum_{n=0}^{N} x^j (1-x) < \varepsilon / 4 S.
\]

Split the sum in (2.7.4) to the sums \(\sum_{n=0}^{N} \) and \(\sum_{n=N+1}^{\infty} \).

For the first sum, when \(x > x_0 \), we have \(\sum_{n=0}^{N} x^j (1-x) |s_j - S| < \varepsilon / 2 \).

For the second

\[
(2.7.5) \quad \sum_{n=N+1}^{\infty} x^j (1-x) |s_j - S| \leq \sup_{j > N} |s_j - S| \leq \varepsilon / 2.
\]

November 1, 2009