1. Prove: If A is a diagonal matrix with distinct entries on the diagonal, and if B is a matrix such that $AB = BA$, then B is diagonal.

2. Let $T \in \mathcal{L}(V)$, and $V = U \oplus W$ with both summands T-invariant. Let π be the projection onto U along W.
 a. Prove that π commutes with T.
 b. Is π necessarily of the form $P(T)$ for some polynomial P?
 c. Does π commute with every operator that commutes with T?

3. If $\min P_T$ is irreducible, then $\min P_{T,v} = \min P_T$ for every $v \neq 0$ in V.

4. If $\min P_T$ is irreducible then $\dim V$ is divisible by $\deg \min P_T$.
 Hint: Use Proposition 5.3.2

5. Let $P_1, P_2 \in \mathbb{F}[x]$. Prove:
 \[\ker(P_1(T)) \cap \ker(P_2(T)) = \ker(\gcd(P_1, P_2)). \]

6. *(Schur’s lemma).* A system $\{W, S\}$, $S \subset \mathcal{L}(W)$, is minimal if no nontrivial subspace of W is invariant under every $S \in S$.
 Assume that $\{W, S\}$ is minimal, and $T \in \mathcal{L}(W)$.
 a. If T commute with every $S \in S$, so does $P(T)$ for every polynomial P.

b. If T commutes with every $S \in S$, then $\ker(T)$ is either \{0\} or W. That means that T is either invertible or identically zero.

c. With T as above, the minimal polynomial $\min P_T$ is irreducible.

d. If T commute with every $S \in S$, and the underlying field is \mathbb{C}, then $T = \lambda I$.
Hint: The minimal polynomial of T must be irreducible, hence linear.

7 Assume that T is invertible and $\deg \min P_T = m$. Prove that

$$\min P_{T^{-1}}(x) = cx^m \min P_T(x^{-1}),$$

where $c = \min P_T(0)^{-1}$.