1. In order to prove Cauchy’s Theorem, we showed that if \(p \mid |G| \), then there exists an element of order \(p \) in \(G \). Using the same argument, what can you say about the number of elements of order \(p \)? (Give both an answer and an argument to support it.)

2. In each of the following statements, determine if the given \(R_i \subset X_i \times X_i \) defines an equivalence relation on the set \(X_i \).

 (a) Let \(X_2 \) be the set of Stanford students, and let \((x, y) \in R_2 \) if there is some class which appears on the schedules of \(x \) and of \(y \).

 (b) Let \(X_3 \) be the set of all subsets of the integers, and define \((x, y) \in R_3 \) if the set consisting of integers that are in \(x \) but not \(y \) together with the integers that are in \(y \) but not \(x \) is finite. (This set of elements is called the \textit{set theoretic difference of} \(x \) \textit{and} \(y \).

 (c) Let \(X_4 \) be the integers, and define \((x, y) \in R_4 \) if \(x \neq y \).

 (A previous version of this question repeated a part from the last problem set.)