Problem 1. Assume \(E \to M \) is a holo bd with a hermitian metric, and \(\nabla \) its Chern connection. Let \(\tau = (\tau_{ij}) \) denote the connection matrix in a local frame \(\{ e_k \} \) of \(E \).

(a) show that if \(\{ e_k \} \) is a holo frame, then

\[
\tau = \partial H \cdot H^{-1}
\]

where \(H = (h_{ij}) \) is the matrix of coefficients associated to \(h \) in this frame.

(b) show that if \(\{ e_k \} \) is a unitary frame (i.e. \(h_{ij} = \delta_{ij} \)), then \(\tau \) is skew hermitian:

\[
\tau_{ij} + \overline{\tau}_{ji} = 0 \quad \text{i.e.} \quad \tau + \tau^T = 0
\]

Conclude that the curvature matrix \(\Theta \) is skew-hermitian (i.e. takes values in the Lie algebra \(\text{u}(r) \)).

Problem 2. Assume \(E \) and \(F \) are cx v bd over \(M \) with connections \(\nabla^E \) and \(\nabla^F \).

(a) Show that

\[
\nabla(\sigma \oplus s) = \nabla^E(\sigma) + \nabla^F(s)
\]

\[
\nabla(\sigma \otimes s) = \nabla^E(\sigma) \otimes s + \sigma \otimes \nabla^F(s)
\]

\[
(\nabla T)(\sigma) = \nabla^F(T(\sigma)) - T(\nabla^E \sigma)
\]

for all \(\sigma \in \Gamma(E) \), \(s \in \Gamma(F) \) and \(T \in \Gamma(\text{Hom}(E, F)) \) define connections on \(E \oplus F \), \(E \otimes F \) and respectively \(\text{Hom}(E, F) \). What is the formula for the induced connection on \(E^* \)?

(b) show that any connection \(\nabla \) on the direct sum \(E \oplus F \) "projects" to a connection on \(E \):

\[
\nabla^E(s) = \pi_E \circ \nabla(s) \quad \text{for all} \quad \sigma \in \Gamma(E)
\]

and this construction is compatible with the one in (a) i.e. if we start with \(\nabla^E \) and \(\nabla^F \), induce \(\nabla \) on \(E \oplus F \) and then project back to the factors we get what we started with.

(c) if \(E, F \) are holo v. bd with a hermitian metric and Chern connections \(\nabla^E \) and \(\nabla^F \), show that the Chern connections of \(E \oplus F \), \(E \otimes F \), \(E^* \) and \(\text{Hom}(E, F) \) are given by (a).

Problem 3. Assume \(E \to M \) is a holo bd, and let \(A \) denote the space of connections \(\nabla \) on \(E \) compatible with the holo structure.

(a) Show that \(A \) is an affine space modeled on \(\Lambda^{1,0}(\text{End}(E)) \) i.e. the difference \(a = \nabla_1 - \nabla_2 \) between two such connections is a \((1, 0)\) form with values in \(\text{End}(E) \).

(b) Show that the difference between the dual connections on \(E^* \) is \(-a^* \).

(c) Calculate the corresponding difference of connections on \(E \oplus F \), \(E \otimes F \) and respectively \(\text{Hom}(E, F) \) in terms of the differences \(a_E \) and \(a_F \).

Problem 4. Assume \(E \to M \) is a holo v. bd. For any hermitian metric \(h \) on \(E \), consider its Chern connection \(\nabla \). Show that its curvature gives a class

\[
[R_{\nabla}] \in H^{1,1}(M, E)
\]

in Dolbeault cohom which is independent of the hermitian metric (called the Atiyah class).

Hint: use Bianchi identity \(\nabla R_{\nabla} = 0 \); relate the difference of curvatures to that of the connections.

Problem 5. Assume \(E, F \) are (cx) v. bds with connections. Given the curvatures \(R_{\nabla^E} \) and \(R_{\nabla^F} \), calculate the curvatures of induced connections on \(E \oplus F \), \(E \otimes F \), \(E^* \), \(\det E \).
Problem 6. Assume \(E \to M \) is a \(\mathbb{C} \) v. bd, \(F \subset E \) a \(\mathbb{C} \) subbundle and \(\pi : E \to E/F \) the quotient. Fix a connection \(\nabla \) and a hermitian metric \(h \) on \(E \), which induce ones on \(F \) and \(E/F \).

(a) denote by \(F^\perp \) the orthogonal complement of \(F \) in \(E \) wrt \(h \). Show that as hermitian v. bds

\[
F^\perp = E/F \quad \text{and} \quad E = F \oplus F^\perp.
\]

i.e. \(h \) defines a canonical splitting of the SES \(0 \to F \to E \to E/F \to 0 \) as hermitian v. bds.

(b) show that

\[
A : \Gamma(F) \to \Lambda^1(E/F) \quad \text{defined by} \quad A(\sigma) = \pi(\nabla(\sigma)) \quad \text{for all} \quad \sigma \in \Gamma(F)
\]
is tensorial, i.e. can be regarded as a 1-form on \(M \) with values in \(\text{Hom}(F, E/F) \) (called the 2nd fundamental form of \(F \) in \(E \)).

(c) show that under the splitting \(E = F \oplus F^\perp \) (induced by \(h \)), the second fund form is

\[
A(\sigma) = \nabla^E(\sigma) - \nabla^F(\sigma) \quad \text{for all} \quad \sigma \in \Gamma(F),
\]

and \(A \) can be regarded as a 1-form on \(M \) with values in \(\text{Hom}(F, F^\perp) \).

(d) show that in a unitary frame on \(E \) (compatible with the splitting \(E = F \oplus F^\perp \)), the connection matrices \(\tau \) are related by

\[
\tau_E = \begin{pmatrix} \tau_F & \overline{A}^T \\ A & \tau_{F^\perp} \end{pmatrix}
\]

while for the curvature matrices \(\Theta_F = \Theta_E|_F + \overline{A}^T \wedge A \) and \(\Theta_{F^\perp} = \Theta_E|_{F^\perp} + A \wedge \overline{A}^T \).

Problem 7. Assume \(E \) is a holo v bd with a hermitian metric \(h \) and Chern connection \(\nabla \). Assume \(F \subset E \) a holo subbundle, and let \(F^\perp \) the orthogonal complement of \(F \) in \(E \) wrt \(h \). (Careful: in general, \(F^\perp \) may NOT be a holo sub-bd).

(a) show that the projection of \(\nabla \) to \(F \) is the Chern connection on \(F \) and that the second fundamental form \(A_F \) of \(F \) in \(E \) is of type \((1,0)\).

(b) show that \(F^\perp \) is a holo subbundle iff the second fundamental form of \(F^\perp \) has type \((1,0)\).