Please note: You will be graded on both correctness and quality of exposition. Please show your work and explain your reasoning clearly.

“It is the eye of ignorance that assigns a fixed and unchangeable color to every object; beware of this stumbling block.” –Paul Gauguin

1. Show that if every pair of odd cycles of G have a vertex in common, then $\chi \leq 5$.

2. Show that the only 3-critical graphs are the odd k-cycles with $k \geq 3$.

3. The join $G_1 \vee G_2$ of two graphs G_1 and G_2 is defined by connecting each vertex of G_1 to G_2. Show that $\chi(G_1 \vee G_2) = \chi(G_1) + \chi(G_2)$, and that $G_1 \vee G_2$ is critical if and only if both G_1 and G_2 are.

4. Assume $k \geq 3$. Let G_1 and G_2 be two k-critical graphs with exactly one vertex v in common, and let vv_1 and vv_2 be edges of G_1 and G_2. Show that the graph $(G_1 - vv_1) \cup (G_2 - vv_2) + v_1v_2$ is k-critical.

5. Exhibit 4-critical graphs with n vertices, for $n = 4$ and any $n \geq 6$. Moreover, prove there is no such graph with 5 vertices.

6. Calculate the chromatic polynomials of the graphs in Ex. 8.4.1, p. 128 of Bondy-Murty.

7. Calculate the chromatic polynomial of a polygon on n vertices.

8. Beginning from Theorem 8.6 of Bondy-Murty (as was proved in class), prove that $\pi_k(G)$ is a polynomial in G with leading term $k\#V(G)$. Moreover, if G is simple, prove the second term is $-\#E(G)k^{\#V(G)-1}$.

9. Prove that if G is connected on n vertices, then $\pi_k(G) \leq k(k-1)^{n-1}$. (Hint: If you think about this, you can prove it with virtually no work.)

10. (Postponed to HW4.) Let G be a simple graph with 10 vertices and 26 edges. Show that G has at least 5 triangles. Can equality occur?

11. Extra credit: Without resorting to a long, tedious computation, prove that the Grötzsch graph cannot be 3-colored.