1. Evaluate
\[\int_C \frac{y}{z} \, dz, \]
where \(C \) is the contour consisting of the upper half of the unit circle from \(= 1 \) to \(-1\). (In the integrand, \(y = \text{Im} \, z \).)

2. With the same contour \(C \) as in part 1, evaluate
\[\int_C \frac{3z^2}{z^3 + 2} \, dz. \]
Clarify which theorem(s) you use and why they apply.

3. Suppose \(C \) is the positively oriented ellipse with equation \(4x^2 + y^2 = 4 \). Evaluate
\[\int_C \cot z \, dz. \]
Clarify which theorem(s) you use and why they apply. (Hint: show that \(\cot z \cdot z \) is analytic inside \(C \). How this observation can be used?)