HOMEWORK ASSIGNMENT 6

(1) Solve problems 7.2, 7.4, 7.8, 7.12

(2) Read the handout about weak convergence.

(3) Prove that if, in a separable Hilbert space, \(x_n \to x \) weakly and \(\|x_n\| \to \|x\| \), then \(\|x_n\| \to \|x\| \) in the norm sense. (Hint: Expand \((x - x_n, x - x_n) \), and consider the limit of each term as \(n \to \infty \).)

(4) (a) Prove that an operator \(T \in \mathcal{L}(H) \) (\(H \) is a Hilbert space) that is \(1-1 \), has dense range, and is bounded below (i.e., \(\inf_{\|x\|=1} \|Tx\| > 0 \)) is invertible. (Hint: Note that you were not given that \(T \) is onto, i.e. that for every \(x \) there is a \(y \) so that \(x = Ty \). Proving this will be your first step toward establishing that \(T \) is invertible. First show that if \(y_i \in H \) and \(T \) is bounded below then if \(Ty_i \to x \) then \(y_i \) is a Cauchy sequence.

(b) Concluded that if \(T \) fails to be invertible, it fails for one of the following mutually exclusive reasons:

S 1. \(T \) is not \(1-1 \), i.e., it has a non trivial kernel: \(\ker T = \{ x : Tx = 0 \} \neq 0 \).
S 2. \(T \) is \(1-1 \) and \(T(H) \) is dense in \(H \), but \(T \) is not bounded below (see above).
S 3. \(T \) is \(1-1 \), but \(T(H) \) is not dense in \(H \).
 Give an example for each case.