Math 113 Midterm Solutions
Bowei Liu
Fall 2013

Question 1. Let V and W be finite dimensional vector spaces and $T \in \mathcal{L}(V, W)$ a linear transformation.

(a) Show that there is a basis $(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n)$ of V so that for some k, \{T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_k)\}$ are linearly independent and $T(\vec{v}_{k+1}) = T(\vec{v}_{k+2}) = \ldots = T(\vec{v}_n) = 0$.

Proof. We first present a solution which uses subspace ideas; the second solution uses explicit bases. Let $U := \ker(T)$. Note that U is a subspace of V; thus we may write V as a direct sum, $V = U \oplus U'$, for some other subspace $U' \subset V$, by Theorem 3.21. Consider T restricted to U'. This is a map $T : U' \to W$, which is injective, since $U' \cap \ker(T) = \{0\}$. And note that injective maps, in general, preserve linear independence: if we have a linearly independent set \{\vec{x}_1, \ldots, \vec{x}_n\} in a vector space X, a linear map of vector spaces $A : X \to Y$, and a linear combination $0 = \lambda_1 A\vec{x}_1 + \cdots + \lambda_n A\vec{x}_n$, then $0 = A(\lambda_1 \vec{x}_1 + \cdots + \lambda_n \vec{x}_n)$, so $\lambda_1 \vec{x}_1 + \cdots + \lambda_n \vec{x}_n = 0$, which implies $\lambda_1 = \cdots = \lambda_n = 0$. Hence, choosing arbitrary bases for U and U' automatically gives us the desired properties.

Alternatively: Since $\ker(T)$ is a subspace, we may choose a basis \{\vec{v}_n, \vec{v}_{n-1}, \ldots, \vec{v}_{k+1}\} for it. Then by Theorem 2.12, we can extend this to a basis \{\vec{v}_1, \ldots, \vec{v}_n\} of V. Since $\{\vec{v}_{k+1}, \ldots, \vec{v}_n\} \in \ker(T)$ we get by definition that $T(\vec{v}_{k+1}) = \cdots = T\vec{v}_n = 0$. We claim that in addition, $\{T\vec{v}_1, \ldots, T\vec{v}_k\}$ is a linearly independent set of vectors. Indeed, suppose that there exists a linear combination

$$\lambda_1 T\vec{v}_1 + \cdots + \lambda_k T\vec{v}_k = 0 = T(\lambda_1 \vec{v}_1 + \cdots + \lambda_k \vec{v}_k).$$

This implies that $\lambda \vec{v}_1 + \cdots + \lambda_k \vec{v}_k$ is in the kernel of T, and hence it can be expressed in the basis:

$$\lambda \vec{v}_1 + \cdots + \lambda_k \vec{v}_k = \nu_1 \vec{v}_{k+1} + \cdots + \nu_{n-k} \vec{v}_n.$$

However, since the \{\vec{v}_i\}_{i=1}^n form a basis, this implies that all the $\lambda_1 = \cdots = \lambda_k = 0$, as desired. \qed

(b) With \vec{v}_i as above, show that there is a basis $(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_m)$ of W so that $T(\vec{v}_1) = \vec{w}_1, T(\vec{v}_2) = \vec{w}_2, \ldots, T(\vec{v}_k) = \vec{w}_k$.

Proof. This follows from the fact that any subspace of a vector space is a direct summand. In particular, since $\text{Im}(T) \subset W$, there exists $W' \subset W$ such that $\text{Im}(T) \oplus W' = W$.

1
and choosing bases for both direct summands then gives us the desired basis for W.

More explicitly, define $\vec{w}_1 = T\vec{v}_1$, $\vec{w}_2 = T\vec{v}_2$, ..., $\vec{w}_k = T\vec{v}_k$. From (a) we know that this set is linearly independent; hence it may be enlarged to a basis $\{\vec{w}_1, \ldots, \vec{w}_m\}$ for W, by Theorem 2.12, which is of course finite since W is finite-dimensional.

(c) With \vec{v}_i and \vec{w}_i as above, what is the matrix $\mathcal{M}(T, (\vec{v}_1, \ldots, \vec{v}_n), (\vec{w}_1, \ldots, \vec{w}_m))$?

Justify your answer.

Proof. Note that we have, from (a) and (b),

- $T\vec{v}_1 = 1\vec{w}_1 + 0\vec{w}_2 + \cdots + 0\vec{w}_m$,
- $T\vec{v}_2 = \vec{w}_2$,
- $T\vec{v}_k = \vec{w}_k$,
- $T\vec{v}_{k+1} = 0$,
- $T\vec{v}_n = 0$.

Thus, the matrix must look like

$$
\begin{pmatrix}
1 & & & \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{pmatrix}
$$

where all off-diagonal entries are 0, and there are exactly k 1’s on the diagonal.

Question 2. Given a vector space V over \mathbb{R}, there is a standard way of making it into a vector space over \mathbb{C}. Define $V_\mathbb{C} = \{\vec{u} + \vec{v}i : \vec{u}, \vec{v} \in V\}$.

Define addition and scalar multiplication by:

- $(\vec{u} + \vec{v}i) + (\vec{u}' + \vec{v}'i) = (\vec{u} + \vec{u}') + (\vec{v} + \vec{v}')i$,
- $(a + bi) \cdot (\vec{u} + \vec{v}i) = (a \cdot \vec{u} - b \cdot \vec{v}) + (a \cdot \vec{v} + b \cdot \vec{u})i$.

(a) Show that $V_\mathbb{C}$ is a vector space over \mathbb{C}.

Proof. We verify the properties of a vector space.

Commutativity:

- $(\vec{u} + \vec{v}i) + (\vec{u}' + \vec{v}'i) = (\vec{u} + \vec{u}') + (\vec{v} + \vec{v}')i$,

using commutativity in V.

Associativity:

- $(\vec{u} + \vec{v}i) + ((\vec{u}' + \vec{v}'i) + (\vec{u}'' + \vec{v}'')i) = (\vec{u} + \vec{v}i) + ((\vec{u}' + \vec{v}') + (\vec{v} + \vec{v}'')i)$
- $= (\vec{u} + (\vec{u}' + \vec{v}'i)) + ((\vec{v} + (\vec{v} + \vec{v}'')i)i = (\vec{u} + \vec{v}') + (\vec{v}') + (\vec{v} + \vec{v}'')i$
- $= ((\vec{u} + \vec{u}') + (\vec{v} + \vec{v}')i) + (\vec{u}'' + \vec{v}'')i = ((\vec{u} + \vec{v}) + (\vec{v} + \vec{v}')i) + (\vec{u}'' + \vec{v}'')i$;
and
\[
((a + bi)(c + di))(\vec{u} + \vec{v}i) = (ac - bd + (ad + bc)i)(\vec{u} + \vec{v}i)
\]
\[
= (((ac - bd)\vec{u} - (ad + bc)\vec{v}) + ((ad + bc)\vec{u} + (ac - bd)i)\vec{v}) + ((ad + bc)\vec{u} + (ac - bd)i)\vec{v})
\]
\[
= (a(c\vec{u} - d\vec{v}) - b(d\vec{u} + c\vec{v}) + (a(d\vec{u} + c\vec{v}) + b(c\vec{u} - d\vec{v}))i
\]
\[
= (a + bi)((c\vec{u} - d\vec{v}) + (d\vec{u} + c\vec{v})i)
\]
\[
= (a + bi)((\vec{u} + \vec{v}i) + (c + di)(\vec{u} + \vec{v}i)).
\]

The additive identity is \(\vec{0} = (\vec{0} + \vec{0}i)\), since
\[
(\vec{0} + \vec{0}i) + (\vec{u} + \vec{v}i) = (\vec{u} + \vec{0}) + (\vec{v} + \vec{0})i = \vec{u} + \vec{v}i.
\]

Additive inverses exist: \(- (\vec{u} + \vec{v}i) = (- \vec{u}) + (- \vec{v})i\), since
\[
(\vec{u} + \vec{v}i) + ((- \vec{u}) + (- \vec{v})i) = (\vec{u} + - \vec{u}) + (\vec{v} + - \vec{v})i = \vec{0} + \vec{0}i = \vec{0}.
\]

The multiplicative identity is \(1 = 1 + 0i\):
\[
(1 + 0i)(\vec{u} + \vec{v}i) = (\vec{u} - 0\vec{v}) + (\vec{v} + 0\vec{u})i = \vec{u} + \vec{v}i.
\]

Finally, we verify the distributive properties:
\[
(a + bi)((\vec{u} + \vec{v}i) + (\vec{u}' + \vec{v}'i)) = (a + bi)((\vec{u} + \vec{u}') + (\vec{v} + \vec{v}')i)
\]
\[
= (a(a\vec{u} + \vec{u}') - b(\vec{v} + \vec{v}')) + (a(\vec{v} + \vec{v}') + b(\vec{u} + \vec{u}'))i
\]
\[
= (a\vec{u} - b\vec{v} + a\vec{u}' - b\vec{v}') + (a\vec{v} + b\vec{u} + a\vec{v}' + b\vec{u}')i
\]
\[
= ((a\vec{u} - b\vec{v}) + (a\vec{v} + b\vec{u}))i + ((a\vec{u}' - b\vec{v}') + (a\vec{v}' + b\vec{u}')i)
\]
\[
= (a + bi)((\vec{u} + \vec{v}i) + (\vec{u}' + \vec{v}'i));
\]

and
\[
((a + bi) + (c + di))(\vec{u} + \vec{v}i) = (a + c + (b + d)i)(\vec{u} + \vec{v}i)
\]
\[
= ((a + c)\vec{u} - (b + d)i\vec{v}) + ((a + c)i\vec{v} + (b + d)\vec{u})i
\]
\[
= (a\vec{u} - b\vec{v} + c\vec{u} - d\vec{v}) + (a\vec{v} + b\vec{u} + c\vec{v} + d\vec{u})i
\]
\[
= ((a\vec{u} - b\vec{v}) + (a\vec{v} + b\vec{u})i) + ((c\vec{u} - d\vec{v}) + (c\vec{v} + d\vec{u})i)
\]
\[
= (a + bi)(\vec{u} + \vec{v}i) + (c + di)(\vec{u} + \vec{v}i).
\]

(b) Suppose that \(V\) is finite dimensional. Show that the dimension of \(V\) as a real vector space equals the dimension of \(V_C\) as a complex vector space.

Proof. Let the real dimension of \(V\) be \(n\), so that there exists a basis \(\{\vec{v}_1, \ldots, \vec{v}_n\}\) of \(V\) as a real vector space.

We claim that \(\{\vec{v}_1 + \vec{0}_i, \ldots, \vec{v}_n + \vec{0}_i\}\) is a basis for \(V_C\) as a complex vector space.

Indeed, consider any arbitrary vector \(\vec{u} + \vec{w}i \in V_C\). Since \(\vec{u}, \vec{w} \in V\) are real vectors, we can write
\[
\vec{u} = a_1\vec{v}_1 + \cdots + a_n\vec{v}_n,
\]
\[
\vec{w} = b_1\vec{v}_1 + \cdots + b_n\vec{v}_n,
\]
where the \(a_i, b_i\) are real numbers. Hence, we get that
\[
\vec{u} + \vec{w}i = (a_1 + b_1i)\vec{v}_1 + \cdots + (a_n + b_ni)\vec{v}_n,
\]

\[
\square
\]
in other words, $\bar{u} + w\bar{i}$ can be written as a complex linear combination of $\{\bar{v}_1, \ldots, \bar{v}_n\}$. Since $\bar{u} + w\bar{i}$ was an arbitrary vector in V_C, this shows that $\{\bar{v}_1, \ldots, \bar{v}_n\}$ spans V_C.

Next, to show that the set is linearly independent in V_C, note that if we have a complex linear combination

$$0 + 0i = (a_1 + b_1 i)\bar{v}_1 + \cdots + (a_n + b_n i)\bar{v}_n,$$

then by equating real and imaginary parts,

$$0 = a_1 \bar{v}_1 + \cdots + a_n \bar{v}_n, \quad 0 = b_1 \bar{v}_1 + \cdots + b_n \bar{v}_n,$$

which implies that $a_1 = \cdots = a_n = b_1 = \cdots = b_n = 0$, since the $\{\bar{v}_1, \ldots, \bar{v}_n\}$ are linearly independent as real vectors. Since the only complex linear combination of the \bar{v}_i that is 0 is the trivial one, this implies that $\{\bar{v}_1, \ldots, \bar{v}_n\}$ is linearly independent, so it is a basis for V_C.

Therefore the complex vector space dimension of V_C is the same as the real vector space dimension of V, as desired. \hfill \Box

Question 3. Let U, V and W be finite dimension vector spaces of dimension at least one. Let $R \in \mathcal{L}(U, W)$ and $S \in \mathcal{L}(V, W)$ be linear transformations.

(a) Show that there exists a $T \in \mathcal{L}(U, V)$ so that $R = ST$ if and only if $\text{Im}(R) \subset \text{Im}(S)$.

Proof. We have the diagram:

$$\begin{array}{ccc}
U & \overset{R}{\longrightarrow} & W \\
\downarrow{T} & & \downarrow{S} \\
V & \overset{}{\longrightarrow} & \end{array}$$

Note that if $R = ST$, then $\text{Im}(R) = \text{Im}(ST) = \{Sv : v \in \text{Im}(T)\} \subset \text{Im}(S)$, as desired. Thus it remains to show the converse.

Assume that $\text{Im}(R) \subset \text{Im}(S)$. By applying the results of problem 1a and 1b to S, we obtain a basis $\{\bar{w}_1, \ldots, \bar{w}_p\}$ for W and a basis $\{\bar{v}_1, \ldots, \bar{v}_m\}$ for V such that

$$S\bar{v}_1 = \bar{w}_1, \ldots, S\bar{v}_k = \bar{w}_k, S\bar{v}_{k+1} = 0, \ldots, S\bar{v}_m = 0.$$

This also implies that $\{\bar{w}_1, \ldots, \bar{w}_k\}$ is a basis for $\text{Im}(S)$.

Now define the map $S' : W \rightarrow V$ by

$$S'\bar{w}_1 = \bar{v}_1, \ldots, S'\bar{w}_k = \bar{v}_k, S'\bar{w}_{k+1} = 0, \ldots, S'\bar{w}_p = 0,$$

and it is then easy to see that $SS'\bar{v}_i = \bar{w}_1, \ldots, SS'\bar{v}_k = \bar{w}_k$, i.e. SS' is the identity on $\text{Im}(S) \subset W$.

Alternatively, to construct such a S' more abstractly, without using the results of problem 1, note that $\ker(S) \subset V$ is a subspace. Thus, by Theorem 2.12 we may write

$$V = \ker(S) \oplus V',$$

for some other subspace $V' \subset V$.

Then S is injective when restricted to V' (since $\ker(S) \cap V' = \{0\}$), hence every $\bar{w} \in \text{Im}(S)$ has a unique pre-image $\bar{v} \in V'$. But S is clearly surjective onto its image, hence we get a bijection between $V' \to \text{Im}(S)$.

Hence we can simply define S' to be the inverse of this map, i.e. $S' \in \mathcal{L}(\text{Im}(S), V')$, and redefine its codomain to be the whole of V. This redefinition of codomain means that SS' is no longer the identity, but SS' remains an identity map from $\text{Im}(S) \to \text{Im}(S)$.

Now let $T := S'R$. Since $\text{Im}(R) \subset \text{Im}(S)$, and S' was constructed so that SS' is the identity on $\text{Im}(S)$, it follows that $ST = SS'R = R$, as desired. \hfill \Box
(b) Assume that such a \(T \) exists. Show that there is only one such \(T \) if and only if \(S \) is injective.

Proof. Assume \(S \) is injective, and suppose we have two maps \(T, T' \) such that

\[
R = ST, \quad R = ST'.
\]

Subtracting these two equations (which hold when applied to any \(\vec{u} \in U \)), we get

\[
ST\vec{u} - ST'\vec{u} = S(T - T')\vec{u} = 0.
\]

Since \(S \) is injective, the only element such that \(S\vec{v} = 0 \) is \(\vec{v} = 0 \); hence this implies that

\[
(T - T')\vec{u} = 0
\]

for all \(\vec{u} \in U \), i.e. \(T = T' \), as desired.

Conversely, suppose that \(S \) is not injective, so that \(\ker(S) \neq \{0\} \subset V \). This implies that there exists a nonzero linear map \(A : U \to V \) such that \(\{0\} \neq \text{Im}(A) \subset \ker(S) \). For instance, pick a basis \(\{\vec{u}_1, \ldots, \vec{u}_n\} \) for \(U \), let \(\vec{v} \) be an arbitrary nonzero vector in \(\ker(S) \), and define

\[
A\vec{u}_1 = \cdots = A\vec{u}_n = \vec{v}.
\]

Then, given any \(T \) such that \(R = ST \), we can construct another such map by defining \(T' := T + A \). Since \(\text{Im}(A) \subset \ker(S) \) by construction, we have \(SA = 0 \), so that

\[
ST' = S(T + A) = ST + 0 = R,
\]

as desired. And since \(A \) was not the zero map, we know that \(T' \neq T \), which finishes the proof.

\[\square \]

Question 4. Let \(n \) be a positive integer and let \(\gamma = a + bi \) be a complex number with \(b \neq 0 \). Let \(V = \{p \in P(\mathbb{R}) : p(\gamma) = 0, \deg(p) \leq n\} \) be a subset of \(P(\mathbb{R}) \).

(a) Show that \(V \) is a subspace of \(P(\mathbb{R}) \).

Proof. We need to show the 3 properties of a subspace.

Additive identity: the zero polynomial, \(\vec{0}(x) = 0 + 0x + \cdots \) certainly has degree \(\leq n \) by definition, and also satisfies \(\vec{0}(\gamma) = 0 \); hence it is in \(V \).

Closed under addition: suppose \(p(x), q(x) \in V \). Then

\[
(p + q)(\gamma) = p(\gamma) + q(\gamma) = 0.
\]

Since \(\deg(p), \deg(q) \leq n \), they can be written as

\[
p(x) = a_0 + a_1x + \cdots + a_nx^n, \quad q(x) = b_0 + b_1(x) + \cdots + b_nx^n;
\]

Then we get that

\[
(p + q)(x) = (a_0 + b_0) + \cdots + (a_n + b_n)x^n,
\]

so that \(\deg(p + q) \leq n \) as well. This shows that \(p + q \subset V \), as desired.

Closed under multiplication: If \(p(x) \in V \) and \(c \) is a constant, then

\[
(cp)(\gamma) = c \cdot p(\gamma) = 0.
\]

Furthermore, if \(p(x) = a_0 + \cdots + a_nx^n \), then

\[
(cp)(x) = ca_0 + \cdots + ca_nx^n,
\]

so its degree is \(\leq n \) and hence \(cp \in V \) as well.

\[\square \]
(b) Give a basis of V. What is its dimension?

Proof. Note that V consists of polynomials with real coefficients. Therefore, by Theorem 4.10, $\bar{\gamma}$ is also a root of any $p(x) \in V$, and $\bar{\gamma} \neq \gamma$ since $b \neq 0$.

Define the real constants

$$\alpha := -(\gamma + \bar{\gamma}) = -2a, \beta := \gamma \bar{\gamma} = a^2 + b^2,$$

so that

$$(x - \gamma)(x - \bar{\gamma}) = x^2 + (-\gamma - \bar{\gamma})x + \gamma \bar{\gamma} = x^2 + \alpha x + \beta.$$

Now, by Prop. 4.1, we know that every $p(x) \in V$ can be expressed in the form

$$p(x) = (x^2 + \alpha x + \beta)p^*(x), \quad (1)$$

for some real polynomial $p^*(x)$ of degree $\deg(p) - 2$.

This implies that if $n \leq 1$, then V consists of just the zero vector (the only polynomial with negative degree). Hence, if $n \leq 1$, the empty set is a basis for V which has dimension 0.

If $n \geq 2$, then we claim $\dim(V) = n - 1$, and a basis is given by

$$\{(x - \gamma)(x - \bar{\gamma}), (x - \gamma)(x - \bar{\gamma})x, \ldots, (x - \gamma)(x - \bar{\gamma})x^{n-2}\}.$$

Indeed, by writing $p^*(x) = a_0 + a_1 x + \cdots + a_{n-2} x^{n-2}$ and plugging this into (1), we get that any $p(x)$ can be written as a linear combination

$$p(x) = a_0(x^2 + \alpha x + \beta) + a_1(x^2 + \alpha x + \beta)x + \cdots + a_{n-2}(x^2 + \alpha x + \beta)x^{n-2},$$

so that the vectors span V.

To see that the polynomials are independent, suppose that we have an arbitrary linear combination which is equal to 0:

$$a_0(x^2 + \alpha x + \beta) + \cdots + a_{n-2}(x^2 + \alpha x + \beta)x^{n-2} = (x^2 + \alpha x + \beta)(a_0 + \cdots + a_{n-2}x^{n-2}) = 0.$$

Then this implies that $a_0 + \cdots + a_{n-2}x^{n-2}$ is the zero polynomial, which only happens when $a_0 = \cdots = a_{n-2} = 0$, by Theorem 4.4.

This shows that the set of vectors above is linearly independent and spans V, hence is a basis for V and gives the correct dimension, $n - 1$.

\square