1. Read §1–§6 in the handout on absolute values.

2. Compute the initial terms of the p-adic expansion (up to aq_p^4) for $1/7$ and -3 in \mathbb{Q}_p for $p = 2, 3, 5$, where the expansions are taken to be in the form $\sum a_n p^n$ with $a_n \in \mathbb{Z}, 0 \leq a_n < p$. Also compute a square root of 2 in \mathbb{Q}_p for $p \in \{5, 7, 17\}$ up to the term aq_p^4, or explain why none exists; be clear on your choice of square root.

3. Let F be a field that is complete with respect to a non-trivial discretely-valued absolute value $| \cdot |$, and let A be the associated valuation ring (so A is a discrete valuation ring). Let F'/F be a finite extension (possibly inseparable!), and let A' be the valuation ring of F' with respect to the unique absolute value $| \cdot |'$ extending $| \cdot |$. Let k and k' be the respective residue fields of A and A'.

 (i) Prove that if $\{a_i'\}$ is a finite set of elements of A' that have k-linearly independent images in k', then the a_i's are F-linearly independent in F'. Conclude that $[k' : k] \leq [F' : F]$, so $f = [k' : k]$ is finite. This is called the residue field degree attached to F'/F.

 (ii) Using the norm-formula for $| \cdot |'$ in terms of $| \cdot |$, deduce that $| \cdot |'$ is discretely-valued, with $e \overset{\text{def}}{=} |[F'/\mathbb{Q}] : [F' : F]| \leq [F' : F]$, so A' is a discrete valuation ring and e is finite; this is called the ramification degree attached to F'/F. To justify the terminology, show that if $\pi \in A$ is a uniformizer and $\pi' \in A'$ is a uniformizer then $\pi = \pi'e^u$ with $u' \in A'^\times$.

 (iii) Let \mathfrak{m} and \mathfrak{m}' denote the maximal ideals of A and A'. Choose $\{a_i'\}$ in A' lifting a k-basis of k'. Prove that the ef elements $a_i'\pi'^j$ for $1 \leq i \leq e$ and $0 \leq j \leq e - 1$ are A-linearly independent, and use \mathfrak{m}'-adic completeness of A' and \mathfrak{m}-adic completeness of A to prove that the A-linear inclusion

 $$\bigoplus_{1 \leq i \leq f, 0 \leq j \leq e - 1} Aa_i'\pi'^j \to A'$$

 is an isomorphism (hint: first study A'/\mathfrak{m}^r for $1 \leq r \leq e$). Hence, A' is a finite A-module (so A' is the integral closure of A in F') and $[F' : F] = ef$.

4. Let K be a field equipped with a non-trivial non-archimedean absolute value $| \cdot |$. Let A be the valuation ring and \mathfrak{m} its maximal ideal (so $\mathfrak{m} \neq 0$ since $| \cdot |$ is non-trivial).

 (i) Prove that A is open in K and \mathfrak{m} is open in A. Also prove that for any $c \in K^\times$, $\{x \in K \mid |x| \leq |c|\}$ is open and closed, and is homeomorphic to A via $x \mapsto x/c$. Conclude that K is locally compact if and only if A is compact.

 (ii) Assuming that A is compact, deduce that \mathfrak{m} has finite index in A, and hence that the residue field $k = A/\mathfrak{m}$ is finite. Also prove that in such cases $| \cdot |$ must be discretely-valued (so A is a discrete valuation ring) and complete. Finally, conclude in general that K is locally compact if and only if K is complete and k is finite.

 (iii) Now assume K is locally compact and let $g = \#k$. Let the normalized absolute value $| \cdot |_K$ be the unique power of $| \cdot |$ with value group \mathbb{Q}^\times; that is, $| \cdot |_K = q^{-\text{ord}_K}$ where $\text{ord}_K : K^\times \to \mathbb{Z}$ is the normalized order function (sending uniformizers to 1). Prove that if μ is a Haar measure on K (which makes sense since K is locally compact) and $a \in K^\times$, then $\mu(aS) = \mu(S)$ (for Borel sets S) is a Haar measure on K and $\mu_a = |a|_K \cdot \mu$. In other words, the normalized absolute value computes the scaling effect by K^\times on Haar measures of K.

5. Continuing with the preceding exercise, let K be a field that is locally compact with respect to a non-trivial non-archimedean absolute value. Our aim is to classify all such K. (The archimedean case was handled in the handout on absolute values.) By Exercise 4, K is complete and its valuation ring (A, \mathfrak{m}) is a discrete valuation ring with residue field k that is finite, say with size q. Let p denote the characteristic of k.

 (i) Assume $\text{char}(K) > 0$. Prove that K must have characteristic p, and prove that the algebraic closure k_0 of \mathbb{F}_p in K injects into K. Use Hensel’s Lemma to prove that in fact $k_0 \to k$ is an isomorphism, so via the inverse (Teichmüller lifting) we may canonically view k as a subfield of K (and hence A also has a canonical structure of k-algebra).
(ii) Continuing with (i), upon choosing a uniformizer π of A prove that there exists a unique continuous map of k-algebras $\phi_\pi : k[[T]] \to A$ sending T to π (where $k[[T]]$ is given its T-adic topology), and that this map is an isomorphism (Hint: use completeness for K to prove surjectivity). Conclude that there is an isometry $K \simeq k((T))$ over k when we use the normalized absolute values on both sides. Explain conversely why $k((T))$ with its T-adic topology is locally compact for any finite field, so this gives a classification (up to isomorphism) of local fields with positive characteristic. (It is a general theorem in commutative algebra that if (A, m) is any discrete valuation ring whose fraction field F is m-adically complete with positive characteristic then there exists an abstract isomorphism of rings $A \simeq k[[T]]$ with k the residue field of A, but if k is not algebraic over F_p then this k-algebra structure on A is not canonical.)

(iii) Now assume K has characteristic 0, so $p \in m$ is nonzero. Let $e = \text{ord}_K(p) > 0$ and let $f = [k : F_p]$. Let π be a uniformizer of A. Explain why K is canonically an extension of \mathbb{Q}_p, with $| \cdot |_K$ restricting to $| \cdot |_{F_p}$, and prove that if $\{a_i\}$ in A is a set with F_p-linearly independent image in k then the a_i’s are \mathbb{Q}_p-linearly independent in K.

(iv) Continuing with (iii), let $\{a_i\}$ in A lift an F_p-basis of k. Prove that $\pi^e = pu$ with $u \in A^\times$, and deduce (via π-adic completeness of A and p-adic completeness of \mathbb{Z}_p) that the natural \mathbb{Z}_p-linear map

$$\bigoplus_{1 \leq i \leq f, 0 \leq j \leq e-1} a_i \pi^j \mathbb{Z}_p \to A$$

is an isomorphism. Conclude that $[K : \mathbb{Q}_p] = ef$ is finite. Conversely, prove that any finite extension of \mathbb{Q}_p (endowed with its canonical topology using the absolute value extending that on \mathbb{Q}_p) is a locally compact field. Hence, the non-archimedean local fields with characteristic 0 are precisely the finite extensions of the p-adic fields \mathbb{Q}_p.