1. (This question is not terribly important for our purposes, but you should be aware of its assertions.) Let K/k be a finitely generated extension of fields.
 (i) Prove that every intermediate extension is finitely generated over k.
 (ii) Give a finitely generated k-algebra containing a k-subalgebra that is not finitely generated.
 (iii) Prove that if K/k admits a separating transcendence basis, then $K \otimes_k k'$ is a domain (and hence a field) for any purely inseparable algebraic extension k'/k. Deduce that if $k = \mathbf{F}_p(X,Y)$ and K is the fraction field of $k[U,V]/(U^p - XV^p - Y)$ (why is this a domain?), then K/k does not admit a separating transcendence basis (extra credit: Show that k is algebraically closed in K in this example, so the example is “geometric.”)

2. Let p be a positive prime in \mathbf{Z}.
 (i) Prove that if $p \equiv 3 \mod 4$ then p remains prime in $\mathbf{Z}[i]$.
 (ii) Assume $p \equiv 1 \mod 4$. Using cyclicity of \mathbf{F}_p^\times, deduce that -1 is a square in \mathbf{F}_p^\times and hence $p|(x^2 + 1)$ in \mathbf{Z} for some $x \in \mathbf{Z}$.
 (iii) For any nonzero $n \in \mathbf{Z}$, show that the elements $n + i, n - i \in \mathbf{Z}[i]$ are not divisible (in $\mathbf{Z}[i]$) by an element of \mathbf{O} not in \mathbf{O}^\times. Conclude via (ii) and the UFD property of $\mathbf{Z}[i]$ that if $p \equiv 1 \mod 4$ then p cannot be irreducible in $\mathbf{Z}[i]$.
 (iv) Assume $p \equiv 1 \mod 4$. Use norms and (iii) to prove that $p = \pi \overline{\pi}$ for an irreducible $\pi \in \mathbf{Z}[i]$ (with $\pi \not\in \mathbf{Z}$) that must have norm p, and infer that $p = a^2 + b^2$ for nonzero integers $a, b \in \mathbf{Z}$ that are unique up to ordering and signs.
 (v) Extra credit: Prove that $\mathbf{Z}[[1 + \sqrt{-3}]/2]$ is Euclidean, and use arithmetic in this ring to study representability of primes in the form $a^2 - ab + b^2$, including uniqueness aspects.

3. Let $d \in \mathbf{Z}$ be a nonzero squarefree integer with $d > 1$. Let $K = \mathbf{Q}(\sqrt{d})$ and let \mathcal{O} be its ring of integers. Let us grant Dirichlet’s unit theorem, so $\mathcal{O}^\times/\{\pm 1\}$ is infinite cyclic. A fundamental unit of K is a unit $\varepsilon \in \mathcal{O}^\times$ such that it reduces to a generator in $\mathcal{O}^\times/\{\pm 1\}$ (so the fundamental units are $\pm \varepsilon$ and $\pm 1/\varepsilon$). If an embedding $K \hookrightarrow \mathbf{R}$ is chosen, then the unique fundamental unit > 1 is often called “the” fundamental unit (relative to the chosen embedding). There is a close relationship between Pell’s equation and fundamental units, as you will work out below, but some care is required because a fundamental unit may have norm -1 and (if $d \equiv 1 \mod 4$) may not even lie in $\mathbf{Z}[\sqrt{d}]$.
 (i) Find a quadratic field for which the ring of integers is $\mathbf{Z}[\sqrt{d}]$ and there is a unit with norm -1 (so the fundamental unit has norm -1, whatever it may be). Note that no such example is possible if $d \equiv 3 \mod 4$, or more generally if d is not a square modulo 4. Explain the relationship between fundamental units and Pell’s equation when $d \equiv 2, 3 \mod 4$; in particular, derive the classical structure of the solution set to Pell’s equation by using the unit theorem. Upon embedding K into \mathbf{R}, prove that “the” fundamental unit (or its square when the fundamental unit has norm -1) corresponds to the solution (x, y) to Pell’s equation with small y-coordinate. (As best I can tell, for $d \equiv 2 \mod 4$ the only way to determine if there exists a fundamental unit with norm -1 is to grind out the continued fraction of \sqrt{d} in accordance with (iii) below.)
 (ii) Find $d \equiv 1 \mod 4$ such that the fundamental unit in $\mathcal{O}_K = \mathbf{Z}[(1 + \sqrt{d})/2]$ does not lie in $\mathbf{Z}[\sqrt{d}]$, and prove in general that if $\alpha \in \mathcal{O}_K$ does not lie in $\mathbf{Z}[\sqrt{d}]$ then $\alpha^2 \not\in \mathbf{Z}[\sqrt{d}]$! However, this is about as bad as it gets. Construct an isomorphism
 $$\mathcal{O}_K \simeq \mathbf{Z}[X]/(X^2 - X + (1 - d)/4)$$
 and use this to infer that $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbf{F}_4$ (resp. $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbf{F}_2 \times \mathbf{F}_2$) when $d \equiv 5 \mod 8$ (resp. $d \equiv 1 \mod 8$).
 Since $\mathbf{Z}[\sqrt{d}] = \mathbf{Z} + 2\mathcal{O}_K$, conclude via inspecting the structure of $(\mathcal{O}_K/2\mathcal{O}_K)^\times$ that if $d \equiv 1 \mod 8$ then a fundamental unit of \mathcal{O}_K must lie in $\mathbf{Z}[\sqrt{d}]$, and that if $d \equiv 5 \mod 8$ then the cube of any unit must lie in $\mathbf{Z}[\sqrt{d}]$. Upon embedding K into \mathbf{R}, use the unit theorem to deduce the classical structure of the solution set to Pell’s equation for $d \equiv 1 \mod 4$, and relate “the” fundamental unit (or its square or cube or sixth power) to the “minimal” solution to Pell’s equation.
(iii) Formulate variants of Pell’s equation (of the form $x^2 - dy^2 = k$) whose solvability in \mathbb{Z} (with $y \neq 0$) is equivalent to the fundamental unit having norm -1, or not lying in $\mathbb{Z}[\sqrt{d}]$ (for $d \equiv 1 \pmod{4}$), or both.

4. A number field K is **totally real** if all embeddings of K into \mathbb{C} have image contained in \mathbb{R}, and K is **totally imaginary** if K has no embeddings into \mathbb{R}. The field K is a **CM field** if it is a totally imaginary extension of a totally real subfield K_0 with $[K : K_0] = 2$. (CM fields first arose in the study of abelian varieties with “complex multiplication,” hence the terminology.)

(i) Give necessary and sufficient conditions for K to be totally real (resp. totally imaginary) in terms of the structure of the \mathbb{R}-algebra $K \otimes_{\mathbb{Q}} \mathbb{R}$.

(ii) If K is a CM field, prove that for all embeddings $\iota : K \hookrightarrow \mathbb{C}$, the action of complex conjugation preserves $\iota(K)$ and hence induces an involution on K. Prove that this involution is independent of ι, and so K admits an *intrinsic* “complex conjugation”.

(iii) Conversely, let K be a number field such that for all embeddings $\iota : K \hookrightarrow \mathbb{C}$, the subfield $\iota(K)$ is stable under complex conjugation and the automorphism $x \mapsto \iota^{-1}(\overline{\iota(x)})$ of K with order ≤ 2 is independent of ι and is non-trivial. Prove that K is a CM field.

(iv) Prove that any finite abelian extension of \mathbb{Q} is either totally real or CM, and that a compositum of CM fields is CM. Also prove that if $f \in \mathbb{Q}[X]$ is an irreducible cubic that is not split over \mathbb{R} then a splitting field for f over \mathbb{Q} is an even-degree extension of \mathbb{Q} that is neither totally real nor CM.

5. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{5})$ be a splitting field for $(X^2 - 3)(X^2 - 5)$ over \mathbb{Q}. Prove that $\alpha = \sqrt{3} + \sqrt{5}$ is a primitive element, and compute the discriminant of the order $\mathcal{O} = \mathbb{Z}[\alpha]$ over \mathbb{Z} in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to “write down” the conjugates of α over \mathbb{Q}) use the formula $(-1)^{n(n-1)/2} \prod_{\sigma \neq \tau} (\sigma(\alpha) - \tau(\alpha))$ (with $n = [K : \mathbb{Q}] = 4$ here). Do you get the same answer by both methods? I hope so!