1. For an integrally closed domain A and $F = \text{Frac}(A)$, let F'/F be an algebraic extension that is normal (i.e., all F-embeddings $F' \to \overline{F}$ have the same image). Let A' be the integral closure of A in F'. We claim $\text{Aut}(F'/F)$ acts transitively on fibers of $\text{Spec}(A') \to \text{Spec}(A)$.

(i) Assume F'/F is finite. If $K \subset F'$ is the (Galois) separable closure of F in F', and B is the integral closure of A in K, show that $\text{Spec}(A') \to \text{Spec}(B)$ is bijective and even a homeomorphism. Use this to reduce to treating K instead of F', so for F'/F finite we may assume F'/F is Galois.

(ii) Now with F'/F finite Galois, let $G = \text{Gal}(F'/F)$. Suppose $P, Q \in \text{Spec}(A')$ over $p \in \text{Spec}(A)$ are not in the same G-orbit. Pass to A_p so p is maximal and hence P,Q are maximal. Use the Chinese Remainder Theorem to find $x \in A'$ so that $x \equiv 1 \mod g(P)$ for all $g \in G$ but $x \equiv 0 \mod Q$. Show that $N_{F'/F}(x) \in p$ (using $A' \cap F = A$!) yet $\Pi g \notin P$, and obtain a contradiction.

(iii) For any F'/F, conclude by Zorn’s Lemma. (Hint: for F-normal $E \subset F'$ show $\text{Aut}(F'/F) \to \text{Aut}(E/F)$ by working inside F, and for $\alpha \in F'$ find finite $L/E(\alpha)$ normal over F inside F'.)

2. (i) For nonzero ideals a and b of a Dedekind domain R, prove that the multiplication map $a \otimes_R b \to ab$ is an isomorphism. (Hint: localize to the case of discrete valuation rings R.)

(ii) For a field k, let $R = k[x,y]/(y^2 - x^2)$ (a 1-dimensional noetherian domain, not Dedekind since $y/x \notin R$ but $(y/x)^2 = x \in R$). For the maximal ideal $m = (x,y) \subset R$, prove the R-linear map $m \otimes_R m \to m^2$ is not an isomorphism (hint: apply “reduction modulo m”).

3. Use closedness properties of Spec with respect to module-finite ring maps to make the geometric proof of Noether Normalization over an algebraically closed field (using linear projections) work over any infinite field. (Don’t just rewrite the argument in terms of pure commutative algebra. Embrace the geometric language of Spec and the Zariski topology, combined with algebra.)

4. Let A be a finitely generated algebra over a (possibly finite) field k.

(i) Prove $\dim(A \otimes_k K) = \dim(A)$ for any extension field K/k. (Hint: Using closed subsets of Spec, reduce to A a domain and use Noether Normalization; note $A \otimes_k K$ may not be a domain!)

(ii) Assume A is a domain. By the codimension handout, every maximal chain of irreducible closed sets in $X = \text{Spec}(A)$ has length $1 + \dim X$. Relate irreducible closed sets in $\text{Spec}(A_p)$ to irreducible closed sets in X containing $\{p\}$, and deduce that $\dim A_p = \dim A - \dim(A/p)$ ($< \infty$!).

5. We know that for a field F, the proper irreducible closed sets in $\text{Spec} F[x,y]$ that are not points are precisely “irreducible plane curves”: $\text{Spec} F[x,y]/(f)$ for irreducible $f \in F[x,y]$.

(i) Draw a picture of the map $\text{Spec} k[x,y,t] \to \text{Spec} k[t]$ for an algebraically closed field k, indicating the situation in the fiber over the generic point $\text{Spec} k(t)$ as well as the fibers over closed points $\text{Spec} k[t]/(t-c) = \text{Spec} k(c) \subset k$. Within your picture, assuming char(k) $\neq 2$, draw $\text{Spec} k[x,y,t]/(y^2 - x^2 - h(t))$ for a non-constant $h \in k[t]$, indicating the different behavior over $t = c$ depending on whether or not $h(c) = 0$. Where are you using char(k) $\neq 2$?

(ii) Now replace $k[t]$ with \mathbb{Z}: draw an analogous picture for $\text{Spec} \mathbb{Z}[x,y] \to \text{Spec} \mathbb{Z}$, indicating the fiber over the generic point $\text{Spec} \mathbb{Q}$ as well as over a couple of closed points $\text{Spec} \mathbb{F}_p$. Within your picture, draw $\text{Spec} \mathbb{Z}[x,y]/(y^2 - x^2 - 15)$, indicating the different behavior for the fibers over $p = 3, 5$ versus over (0) or $p > 5$. The fiber over $p = 2$ is usually drawn as a “doubled line”; why?

6. Let A be Dedekind (so $A/m^e \simeq A/m^e A_m$ with A_m a dvr for maximal $m \subset A$), $e_1, \ldots, e_n \geq 0$.

(i) (weak approximation) For distinct maximal p_1, \ldots, p_n find $a \in A - \{0\}$ satisfying $\text{ord}_{p_i}(a) = e_i$ for all i. (Since $p_j A_{p_i} = A_{p_j}$ for $j \neq i$, this says p_i as a factor of aA has multiplicity e_i.) Hint: CRT.

(ii) Using (i), show every nonzero proper ideal a in A is generated by 2 elements. (Hint: Let $\{p_i\}$ be the set of prime factors of a, with multiplicity e_i for p_i. Make $a \in A - \{0\}$ with $\text{ord}_{p_i}(a) = e_i$ for all i, and then $b \in A - \{0\}$ so that (a,b) has only the p_i as prime factors, with multiplicities e_i.)