Math 210A. Nakayama’s Lemma

Let A be a local ring with unique maximal ideal \mathfrak{m}, and let M be a finitely generated A-module. The aim of this handout is to prove the extremely useful Nakayama’s Lemma: a subset of M is a spanning set over A if and only if its image in the A/\mathfrak{m}-vector space $M/\mathfrak{m}M$ is a spanning set over A/\mathfrak{m}. (Taking the potential spanning set $\{0\}$, it follows as a special case that $M = 0$ if and only if $M/\mathfrak{m}M = 0$. We will actually deduce the general case from this special case.)

Beware that the finite generation hypothesis is crucial. For a counterexample otherwise, consider the local ring $A = \mathbb{Z}(p)$ and the quotient A-module $M = \mathbb{Q}/\mathbb{Z}(p)$. In this case $\mathfrak{m} = pA$, so $M/\mathfrak{m}M = M/pM = 0$ (since every element of \mathbb{Q} has the form px for some $x \in \mathbb{Q}$). However, obviously $M \neq 0$ (and also M is not finitely generated as an A-module in this case).

To prove Nakayama’s Lemma, let $N \subseteq M$ be the submodule spanning by the given subset, so by hypothesis N maps onto $M/\mathfrak{m}M$. We wish to conclude that $N = M$ (i.e., $M/\mathfrak{N} = 0$). By passing to the (finitely generated!) quotient module M/N and renaming it as M, we reduce to the following special case: if $M/\mathfrak{m}M = 0$ then $M = 0$. That is, if M is finitely generated over the local ring A and $M = \mathfrak{m}M$ then we wish to conclude that $M = 0$. To prove this, we pick a finite spanning set $\{x_1, \ldots, x_n\}$ of M (as we may, by the finite generation hypothesis) and we shall proceed by induction on n. If $n = 1$ then $M = Ax_1$, so $\mathfrak{m}M = \mathfrak{m}x_1$. Hence, all elements of M have the form ax_1 for some $a \in \mathfrak{m}$. In particular, $x_1 = ax_1$ for some such a. It follows that $(1 - a)x_1 = 0$ in M. But $1 - a$ does not lie in the unique maximal ideal of A (since $a \in \mathfrak{m}$), so it must be a unit! Hence, multiplying by $(1 - a)^{-1}$ makes sense, so $x_1 = 0$ in M. But x_1 spans M, so $M = 0$ as desired. This settles the case $n = 1$.

Now assume $n > 1$ and that the result is proved whenever there are $n - 1$ generators. Since $M = \mathfrak{m}M$, every element of M has the form $\sum a_ix_i$ with $a_i \in \mathfrak{m}$. Applying this to x_n, we get $x_n = \sum a_ix_i$ for some $a_i \in \mathfrak{m}$, so $(1 - a_n)x_n = \sum_{i<n} a_ix_i$. But $1 - a_n \notin \mathfrak{m}$ since $a_n \in \mathfrak{m}$, so by locality $1 - a_n \in A^\times$. Hence, we can scale by $(1 - a_n)^{-1}$ to deduce that x_n is in the A-span of x_1, \ldots, x_{n-1}. It follows that M is spanned over A by x_1, \ldots, x_{n-1}, so by induction on n we get $M = 0$ as desired.