Math 240 – Homework 2 – Due Monday, May 8

Question 1. Black’s formula

Using the change of numéraire technique compute the price of a European call option on stock S with strike K and maturity T when interest rates are allowed to be stochastic. Assume that the volatility of the forward price for delivery at time T, $F_t(T) = S_t/B_t(T)$, is constant.

Justify the use of the risk-neutral valuation rule by computing the replicating portfolio.

Question 2. ATM implied cap volatilities with Vasicek

(a) Derive the formula for a European call option on a zero-coupon bond in Vasicek’s model. Call option has maturity T, strike K, and the zero-coupon bond has maturity $U > T$. Today is time 0.

\[p = B_0(U)\Phi \left(\frac{r^* - \ell_1(T, U, r_0)}{\sqrt{\ell_2(T)}} \right) - KB_0(T)\Phi \left(\frac{r^* - \ell_1(T, T, r_0)}{\sqrt{\ell_2(T)}} \right) \]

where $r^* = -(A(T, U) + \ln K)/C(T, U)$

\[A(t, T) = \left(b - \frac{\sigma^2}{2a^2} \right) \left(T - t - \frac{1 - e^{-a(T-t)}}{a} \right) + \frac{\sigma^2}{4a^3} \left(1 - e^{-a(T-t)} \right)^2 \]

\[C(t, T) = 1 - e^{-a(T-t)} \]

\[\ell_1(T, U) = re^{-aT} + b \left(1 - e^{-aT} \right) - \frac{\sigma^2}{2a^2} \left(2 - 2e^{-aT} - e^{-a(U-T)} + e^{-a(T+U)} \right) \]

\[\ell_2(T) = \frac{\sigma^2}{2a} \left(1 - e^{-2aT} \right) \]

(b) Plot the yield curve $R_0(T)$.

(c) Compute and plot the ATM cap implied volatilities for maturities 1, 2, \ldots, 30 years. Assume $\delta = T_0 = T_i - T_{i-1} = 1/4$.

1
Parameters for Vasicek: $a = 0.86$, $b = 9\%$, $r_0 = 8\%$, and $\sigma = 1.48\%$.

Matlab is recommended for the last two questions. Once you have computed cap prices, you can use the function `ivcap.m` which will compute the corresponding Black's implied volatilities. It takes as inputs: a cap price, a vector of dimension $n+1$ containing $B(T_0), \ldots, B(T_n)$, the parameters n, δ, and strike κ, and returns the implied volatility.

Question 3. An example of a local-martingale that is not a martingale

Let W and \widetilde{W} be two independent Brownian motions. Recall that

$$P\left\{ \exists t > 0 \ W_t^2 + \widetilde{W}_t^2 = 0 \right\} = 0.$$

(The planar Brownian motion never comes back to the origin.) We can therefore define the process $X_t = \ln \left(W_t^2 + \widetilde{W}_t^2 \right)$ for $t \geq 1$. Show that X is a local martingale but not a martingale. [Hint: Compute $E \{ X_t \}$.]