Goal: understand \(\lim_{g \to \infty} \mathbb{H}_\ast (\text{Diff}^+\Sigma_g) \),
prove the Mumford conjecture:
\[
\lim_{g \to \infty} \mathbb{H}_\ast (\text{Diff}^+\Sigma_g; \mathbb{Q}) = \mathbb{Q}[e_1, e_2, e_3, \ldots]
\]

Outline:
- \(\text{Diff}^+\Sigma_g \) = subsets of \(\mathbb{R}^\infty \) diffeomorphic to \(\Sigma_g \)
- \(\underleftarrow{\text{Diff}^+\Sigma_g} \) = subsets of \(\mathbb{R}^\infty \) diffeomorphic to a closed surface
- \(S(0,N) \) = subsets of \(\mathbb{R}^N \) diffeomorphic to a closed surface

\(S(N,N) \) = properly embedded 2-dimensional manifolds in \(\mathbb{R}^N \),

topologized so manifolds can disappear at infinity

(not necessarily compact, connected, finite type, etc.)

\(S(k,N) \) = subspace of \(S(N,N) \) consisting of properly embedded
2-dimensional manifolds contained in \(\mathbb{R}^k \times (0,1)^{N-k} \)

\(S(1,N) \) = properly embedded 2-dimensional manifolds contained in \(\mathbb{R} \times (0,1)^{N-1} \)

\(S(0,N) \) = 2-dimensional closed manifolds in \((0,1)^N \)

Problem: operation in \(S(0,N) \) is disjoint union:

We will redefine, get \(\Sigma(0,N) \) s.t.
operation is connected sum and \(\lim_{N \to \infty} \Sigma(0,N) = \underleftarrow{\text{Diff}^+\Sigma_g} \)

Relaxation principle:
- \(BS(0,N) = S(1,N) \)
- \(BSC(1,N) = S(2,N) \)
- \(BS(0,N) = S(N,N) \)

Zooming: \(S(N,N) \cong \text{Aff}^+(\mathbb{R}^N) \)

Combining these, we have
\[
\mathbb{H}_\ast (\Sigma(0,N); \mathbb{Q}) \cong \mathbb{H}_\ast (\Omega^\infty \text{Aff}^+(\mathbb{R}^N))
\]

Lecture 8: why is this the cohomology?
how do these classes translate to characteristic classes of surface bundles?
\(\Pi_0(S(k,N)) \) is a group for \(k > 0 \)

Let \(d = 2 \), so that \(S(k,N) \) is the space of \(d \)-manifolds in \(\mathbb{R}^N \),
allowed to go to infinity in \(k \) directions.

We will give an argument for \(d = 2 \) which works verbatim for all \(d \).
Assume \(N > d \). Then:

for \(0 < k \leq d \), \(\Pi_0(S(k,N)) = \) the group \(\Omega^{\infty}_{d-k,N-k} \) of cobordism classes
of oriented smooth \((d-k) \)-manifolds in \(\mathbb{R}^{n-k} \)
(with cobordisms embedded in \(\mathbb{R}^{n-k} \times \mathbb{I} \))

for \(d < k \), \(\Pi_0(S(k,N)) = 0 \).

(So for \(d = 2 \), \(\Pi_0(S(1,N)) = 0 \), \(\Pi_0(S(2,N)) = \mathbb{Z} \), \(\Pi_0(S(k,N)) = 0 \) for \(k > 2 \))

The map \(S(k,N) \rightarrow \Omega^{\infty}_{d-k,N-k} \) is given by intersecting with a generic \((0,1)^{N-k} \):

Well-defined? If we intersect with
a different \((0,1)^{N-k} \), the slab
between them is a cobordism
embedded in \((0,1)^{N-k} \times \mathbb{I} \).

Surjective? for any \([M] \in \Omega^{\infty}_{d-k,N-k} \), we can take \(\mathbb{R}^k \times M \in S(k,N) \):

Injective? First, note that anything in \(S(k,N) \) can be homotoped to be of the form \(\mathbb{R}^k \times M \):

So any failure of injectivity is because \(M \) and \(N \) are cobordant, but \(\mathbb{R}^k \times M \) and \(\mathbb{R}^k \times N \)
lie in different components of \(S(k,N) \).

But, if \(M \) and \(N \) are cobordant, we can homotope \(\mathbb{R}^k \times M \) to \(\mathbb{R}^k \times N \) in \(S(k,N) \)
by zipping.
$BS(k,N) = S(k+1,N)$ for $k \geq 0$

Caveats:
- We make $S(k,N)$ into a monoid by taking surfaces in $\mathbb{R}^k \times (0,\alpha) \times (0,1)$ for $\alpha > 0$, with operation given by juxtaposition in the $k+1$st coordinate.
- Since $BS(k,N)$, we'd better take only one component $S(k+1,N)_0$; this doesn't affect the outline, since $BS(k,N) = S(k,N)_0$ gives $S(k,N) = \Omega S(k+1,N)_0 = \Omega S(k+1,N)$.

\[S(k+1,N)_0 \cong S_{\text{walls}}(k+1,N) \cong \tilde{\cong} \rightarrow BS(k,N) \]

A point in $S_{\text{walls}}(k+1,N)$ is:
- A surface $S \in S(k+1,N)$,
- $n+1 \geq 1$ walls W_i disjoint from S
- Weights $t_i \geq 0$ with $t_0 + \ldots + t_n = 1$

The map $S_{\text{walls}}(k+1,N) \cong BS(k,N)$ is defined just as before:
- After forgetting what's outside the walls, the walls cut into slabs giving elements
 \[
 \begin{array}{c}
 \hat{
 \begin{array}{c}
 \bigcirc \
 \end{array}
 \end{array}
 \end{array}
 e S(k,N),
 \]
 and together with the weights t_i we have coordinates in $S(k,N) \times S(k,N) \times \Delta^2 \subset BS(k,N)$.

Since fibers are contractible, this gives a homotopy equivalence $S_{\text{walls}}(k+1,N) \tilde{\cong} BS(k,N)$.
The hard part now is showing that $S(k+1,N)_o \sim \text{forget walls } S_{\text{walls}}(k+1,N)$ is a homotopy equivalence.

Previously this map was a surjective fibration with contractible fibers (convex combinations of all the walls that can be legally inserted).

Here the fibers are still contractible, but the map is no longer surjective: is not disjoint from any wall.

The image of $S_{\text{walls}}(k+1,N)$ is $S_{\text{disjoint}} = S_{\text{disjoint}}(k+1,N)$, consisting of surfaces in $S(k+1,N)$ disjoint from at least 1 wall.

We have:

$S(k+1,N)_o \leftarrow S_{\text{disjoint}}(k+1,N) \leftarrow S_{\text{walls}}(k+1,N)$ and need to show that $S_{\text{disjoint}}(k+1,N) \sim S(k+1,N)_o$.

For any surface $S \in S(k+1,N)_o$,
we will find a wall W so that $h^W = 1_d$ and a homotopy h^W and $h^W(S)$ is disjoint from W, giving a path from S to S_{disjoint}.

But our construction will additionally satisfy the properties that:
- the same homotopy h^W works for any surface S' near to S
- h^W is the identity outside a narrow slab around W

So for any $D^n \rightarrow S(k+1,N)_o$ with $D^n \subset S_{\text{disjoint}}$, by compactness of D^n we can choose finitely many walls W_i s.t. for each $S \in D^n$, at least one h^{W_i} works.

Since the h^{W_i} are disjointly supported, we can piece them together using a partition of unity on D^n, and get a homotopy h of $D^n \rightarrow S(k+1,N)_o$ s.t. $h(D^n) \subset S_{\text{disjoint}}$.

This shows the relative homotopy group of $(S(k+1,N)_o, S_{\text{disjoint}})$ are trivial, so $S_{\text{disjoint}} \sim S(k+1,N)_o$ as desired.
How can we find such a wall \(W \) and homotopy \(h^w \)?

If we can find a \((0,1)^{N-k-1} \) which is disjoint from \(S \),

We can push away from it in the \(R^k \) direction:

Whenever \(k+1 > d \), Sard’s theorem tells us that almost every \((0,1)^{N-k-1} \) is disjoint from \(S \). So we only need to consider \(k+1 \leq d \), which for \(d=2 \) means only \(S(2,N) \):

1) First, expand in \(R^k \) direction as before:

2) Now unzip the middle of the product region near this slice (while keeping the rest of the surface fixed):

To do this, we need the intersection \((0,1)^{N-k-1} \cap S \).

But recall that \(S \mapsto (0,1)^{N-k-1} \cap S \) induces the isomorphism \(\pi_0(S(k+1,N)) \cong \Omega_0 S(k+1,N) \), so what we need is exactly that \(S \in S(k+1,N) \).