Homework 2 solutions.

Problem 4.4. Let \(g \) be an element of the group \(G \). Keep \(g \) fixed and let \(x \) vary through \(G \). Prove that the products \(gx \) are all distinct and fill out \(G \). Do the same for the products \(xg \).

Proof. Let \(g \in G \). Let \(x_1 \neq x_2 \in G \). We need to show that \(gx_1 \neq gx_2 \).

Suppose for contradiction that \(gx_1 = gx_2 \). Since \(G \) is a group, \(g^{-1} \in G \). So this means that \(g^{-1}(gx_1) = g^{-1}(gx_2) \). By associativity, this means that \((g^{-1}g)x_1 = (g^{-1}g)x_2 \). This simplifies to \(cx_1 = cx_2 \), where \(e \) is the identity. Finally, by the property of the identity, we get that \(x_1 = x_2 \). But this contradicts the assumption that \(x_1 \neq x_2 \). So we have shown that if \(x_1 \neq x_2 \) then \(gx_1 \neq gx_2 \). Thus all the elements of the form \(gx \) are distinct.

Similarly, we have to show that if \(x_1 \neq x_2 \in G \) then \(x_1g \neq x_2g \). Again, suppose not. That is, suppose that \(x_1g = x_2g \). But then when we multiply both sides by \(g^{-1} \) on the right, and use the same group properties as above, we get that \(x_1 = x_1 \). Again, this is a contradiction, so we must have that all elements of the form \(xg \) are distinct.

Next we have to show that the sets \(S = \{ gx | x \in G \} \) and \(S' = \{ xg | x \in G \} \) fill out \(G \). That is, for each element \(h \in G \), we need to find elements \(x, x' \in G \) s.t. \(xg = gx' = h \). So let \(x = hg^{-1} \) and let \(x' = g^{-1}h \). We know that \(x, x' \) are in \(G \) since \(g^{-1} \in G \) by the inverse property, and the products are in \(G \) as \(G \) is closed under multiplication.

Now we just compute:

\[
\begin{align*}
xg &= (h g^{-1}) g \\
&= h (g^{-1} g) \\
&= he \\
&= h,
\end{align*}
\]

and similarly we can compute that \(gx' = g(g^{-1}h) \) is just \(h \) after using all three of the group properties.

So for each element \(h \in G \), we have found \(x, x' \) s.t. \(xg = gx' = h \). Therefore the sets \(S \) and \(S' \) fill out \(G \). \(\square \)

Problem 4.5. An element \(x \in G \) satisfies \(x^2 = e \) precisely when \(x = x^{-1} \). Use this observation to show that a group of even order must contain an odd number of elements of order 2.

Proof. Let \(G \) be a group of even order. Let \(|G| = 2n \) for some \(n \in \mathbb{Z} \). Let \(S \) be the set of elements of \(G \) that have order greater than 2. Since only elements of order 2 and the identity satisfy \(x^2 = e \), we can write \(S = \{ x \in G | x^2 \neq e \} \). We want to show that \(S \) has an even number of elements. We use the idea that if an element has order bigger than 2, it is distinct from its inverse, so elements of \(S \) come in pairs. To make this precise, write \(S \) as the following union:

\[
S = \bigcup_{x \in S} \{ x, x^{-1} \}.
\]

We show later that the order of \(x \) is the same as the order of \(x^{-1} \) so this union is indeed \(S \). Since \(x^2 \neq e \) for \(x \in S \), we have that \(x \neq x^{-1} \), so each set in this union has two distinct elements. Since inverses are unique, two sets of the form
\{x_1, x_1^{-1}\}, \{x_2, x_2^{-1}\} \) are either equal or disjoint. So we can write \(S \) as the disjoint union of sets with 2 elements each. Therefore \(S \) has an even number of elements. Let \(2m \) be the number of elements of \(S \), for some \(m \in \mathbb{Z} \).

Let \(T \) be the set of elements in \(G \) of order 2. Let \(k \) be the number of elements of \(T \). Since \(G \) is the disjoint union of \(T \), \(S \) and \(\{e\} \), the number of elements of \(G \) is the number of elements of \(T \) plus the number of elements in \(S \) plus 1. That is, \(2n = 2m + k + 1 \). Solving for \(k \) we get \(k = 2(n - m) - 1 \). Since \(n, m \in \mathbb{Z} \), we get that \(k \) is odd. So we have shown that there is an odd number of elements of order 2.

Problem 4.8. Let \(x \) and \(y \) be elements of a group \(G \). Show that \(x \) and \(gxg^{-1} \) have the same order. Now prove that \(xy \) and \(yx \) have the same order for any two elements \(x, y \) of \(G \).

Proof. Let \(G \) be a group, and let \(x, y, g \in G \). Denote the order of an element \(x \) by \(|x|\). Suppose \(|x| = n \), and \(|gxg^{-1}| = m \). We need to show that \(n = m \). Recall that the order of an element \(x \) is the smallest number \(n \) s.t. \(x^n = e \). First we will show that the order of \(gxg^{-1} \) is at most \(n \). You can use group properties to show that \(gxg^{-1} \cdot gxg^{-1} = gx^2g^{-1} \). So we can do the following calculation:

\[
(gxg^{-1})^n = \underbrace{gxg^{-1}gxg^{-1}\cdots gxg^{-1}}_{\text{n times}} = gx^n g^{-1} = gg^{-1} \quad \text{since } x^n = e, \text{ as the order of } x \text{ is } n
\]

We have just shown that \((gxg^{-1})^n = e\), so \(|gxg^{-1}| \leq |x|\). Since this is true for arbitrary \(x \) and \(g \), let \(x' = gxg^{-1} \) and let \(g' = g^{-1} \). By what we have just shown, \(|g'x'g'^{-1}| \leq |x'|\). But since \(g'^{-1} = g \), we know that \(g'x'g'^{-1} = g^{-1}(gxg^{-1})g = x \). Therefore, \(|g'x'g'^{-1}| \leq |x'| \) just means that \(|x| \leq |gxg^{-1}| \). Thus \(|gxg^{-1}| = |x|\).

Now we will show that \(|xy| = |yx|\). Suppose \(|xy| = n\). Then,

\[
xy \cdots xy = e
\]

n times

Multiplying both sides by \(y^{-1} \) on the right, we get

\[
xy \cdots xyy^{-1} = ey^{-1} = y^{-1} \quad \text{i.e.}
\]

\[
xy \cdots xy x = y^{-1}
\]

n-1 times

Now multiplying by \(y \) on the left, we get

\[
y xy \cdots xy x = yy^{-1} = e
\]

n-1 times

Note that in the last line, we really have \(yx \) multiplied by itself \(n \) times. Thus \(|yx| \leq |xy|\). Since this is true for arbitrary \(x \) and \(y \), we can switch the role of \(x \) and \(y \). So we see that \(|xy| \leq |yx|\) as well. Therefore, \(|xy| = |yx|\).

How this relates to last week’s bonus problem: Suppose \(R \) and \(S \) are rotations of the sphere, and \(RS \) has finite order. Since rotations of the sphere form a group,
the above statement shows that SR has the same order as RS. If RS is a rotation of order n, then it must rotate by the angle $2\pi/n$. Thus SR rotates by $2\pi/n$ as well. Therefore, if RS has finite order then both RS and SR are rotations through the same angle. Note that there are plenty of rotations that are not finite order, however. Consider, for example, a rotation of the sphere through any axis by angle $\pi/\sqrt{2}$.

\[\square\]

Problem 5.1. Find all the subgroups of each of the groups \mathbb{Z}_4, \mathbb{Z}_7, \mathbb{Z}_{12}, D_4 and D_5.

Answer. We start with a general remark that will make this problem easier.

Remark. Let G be a group, and let $g \in G$ have finite order. Then g^{-1} is a power of g. This is because there is some n s.t. $g^n = e$. So $g \cdot g^{-1} = e$ meaning $g^{-1} = g^{n-1}$.

In all of these groups, each element has finite order so this remark applies.

We will write $G = \langle g_1, \ldots, g_n \rangle$ for a group generated by g_1, \ldots, g_n. In the following examples, we will find lists of subgroups by choosing subsets of each group to be generators. Note that the above remark means that $\langle g \rangle = \langle g^{-1} \rangle$ for all elements g of finite order.

- \mathbb{Z}_4: First of all 1 and 3 generate \mathbb{Z}_4, so if they were in any generating set we would get all of \mathbb{Z}_4 back. On the other hand, the only multiples of 2 are 0 and 2 itself. So the three subgroups are $\{e\}$, $\langle 2 \rangle = \{0, 2\}$ and \mathbb{Z}_4.

- \mathbb{Z}_7: All the non-zero elements n of \mathbb{Z}_7 generate \mathbb{Z}_7. So the only two subgroups are $\{0\}$ and \mathbb{Z}_7.

- \mathbb{Z}_{12}: The elements 1, 5, 7 and 11 generate \mathbb{Z}_{12}. Since 10 is the additive inverse of 2, $\langle 2 \rangle = \langle 10 \rangle$ by the remark at the start of the solution. Similarly, $\langle 3 \rangle = \langle 9 \rangle$ and $\langle 4 \rangle = \langle 8 \rangle$. 6 is its own inverse so $\langle 6 \rangle$ isn’t paired with anyone.

Next, we look at subgroups with more than one generator. By the above, including 1, 5, 7 or 11 in a generating set yields all of \mathbb{Z}_{12}. If both 2 and 3 are generators of a subgroup, then 5 is in that subgroup, so including both 2 and 3 in a generating set yields all of \mathbb{Z}_{12}. Likewise, including 3 and 4 means 7 will be in the subgroup, so you get all of \mathbb{Z}_{12} again. Since $\langle 4 \rangle$ is a subset of $\langle 2 \rangle$, including both 2 and 4 in a generating set is the same as including just 2. So $\langle 2, 4 \rangle = \langle 2 \rangle$. Likewise, $\langle 2, 6 \rangle = \langle 2 \rangle$. Finally, including 4 and 6 in a generating set means 2 will be in your subgroup, so you may as well have just included 2. That is, $\langle 4, 6 \rangle = \langle 2 \rangle$.

Therefore the subgroups of \mathbb{Z}_{12} are $\{0\}$, $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$, $\langle 3 \rangle = \{0, 3, 6, 9\}$, $\langle 4 \rangle = \{0, 4, 8\}$, $\langle 6 \rangle = \{0, 6\}$ and \mathbb{Z}_{12}.

- $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$: The one-generator subgroups of D_4 are $\{e\}$, rotation subgroups $\langle r \rangle = \{e, r, r^2, r^3\}$, $\langle r^2 \rangle = \{e, r^2\}$ and reflection subgroups $\langle rs \rangle = \{e, rs\}$, $\langle r^2s \rangle = \{e, r^2s\}$ and $\langle r^3s \rangle = \{e, r^3s\}$.

To get more subgroups we can add generators. Adding a rotation to a rotation subgroup doesn’t yield anything new. Adding any reflection to $\langle r \rangle$ gives us a subgroup with both r and s, meaning we get D_4 back. But we can add a reflection to the subgroup $\langle r^2 \rangle$. We get $\langle r^2, s \rangle = \{e, r^2, s, r^2s\}$ and $\langle r^2, rs \rangle = \{e, r^2, rs, r^3s\}$. Adding any more generators to these two subgroups gives us all of D_4.

Putting another reflection in a reflection subgroup means that subgroup will have a rotation, and we have just listed all the subgroups with a rotation.
Problem 5.4. Find the subgroup of D_n generated by r^2 and r^2s, distinguishing carefully between the cases n odd and n even.

Answer. Let $G = \langle r^2, r^2s \rangle$. The elements of G are of the form $(r^2)^{a_1} (r^2s)^{b_1} \cdots (r^2)^{a_k} (r^2s)^{b_k}$ where $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. One can check that $r^2s \cdot r^2 = s$ and $r^2s \cdot r^2s = e$. So the expression above simplifies to an expression of the form r^{2l} for some $l \in \mathbb{Z}$.

Suppose n is even. Then $n = 2m$ for some $m \in \mathbb{Z}$. Thus $r^n = (r^2)^m = e$, so the powers of r^2 are all the even powers of r up to $2(m-1)$. Thus $G = \{e, r^2, \ldots, r^{2(m-1)}, r^2s, \ldots, r^{2(m-1)s}\}$.

Now suppose n is odd. Then $n = 2m+1$ for some $m \in \mathbb{Z}$, and $r^{2m+1} = e$. Since r^{2m+2} is a power of r^2 and $r^{2m+2} = r$, we have that r is in G. And since $r^2s \cdot r^2 = s$, $s \in G$. But r and s generate all of D_n, so $G = D_n$.

Problem 5.5. Suppose H is a finite non-empty subset of a group G. Prove that H is a subgroup of G iff xy belongs to H whenever x and y belong to H.

Proof. Let G be a group, and H a finite subset of G.

Suppose xy belongs to H whenever x and y belong to H. This means that H is closed under the group operation. And since H is a subset of G, it is associative. So we only need to show that the identity is in H and elements of H have inverses also in H.

Since H is non-empty, we can choose an arbitrary element $x \in H$. Consider the set $S = \{x, x^2, x^3, \ldots, x^n, \ldots\}$. By the assumption, this whole set is in H since every element of S is just x multiplied by the previous element. But H is a finite set. So S must also be a finite set. Which means that elements of S must repeat. That is, there are numbers $i \neq j$ s.t. $x^i = x^j$. Multiplying both sides by x^{-i}, we get the equation $e = x^{j-i}$. But x^{j-i} is in S. Thus, the identity is in H, and moreover the identity is a power of x. Write $n = j - i$. Since $x^n = e$, then $x \cdot x^{n-1} = e$. So $x^{n-1} = x^{-1}$. Since $x^{n-1} \in H$, the inverse of x is in H. Since x was chosen arbitrarily, every element of H has an inverse. So H is a subgroup of G.

Now suppose H is a subgroup of G. Then H is closed under group multiplication, so for any x and y in H, xy is also in H. Therefore, when H is a finite subset of G, H is closed under multiplication if and only if it is a subgroup.

Problem 5.7. Let G be an abelian group and let H consist of those elements of G which have finite order. Prove that H is a subgroup of G.
Proof. Since H is a subset of G it already has the associativity property. Also the identity has order 1, so $e \in H$. So we just need to show it is closed under multiplication and has inverses.

Let $x, y \in H$. Let $|x| = n, |y| = m$ for $n, m \in \mathbb{Z}$. Since G is abelian, $(xy)^{nm} = x^{nm}y^{nm}$. But $x^{nm} = (x^n)^m = e^m$ and $y^{nm} = (x^m)^n = e^n$. So $(xy)^{nm} = e$. Thus the order of xy is at most nm, so $xy \in H$. Therefore H is closed under multiplication.

Let $x \in H$ with $|x| = n$. Then $x^n = e$, so multiplying both sides by x^{-n} we get $e = x^{-n} = (x^{-1})^n$. So the order of x^{-1} is at most n. (In fact, it is n, since we can reverse the roles of x and x^{-1}. Therefore, $x^{-1} \in H$.

So we have shown that H is a subgroup of G. □

Problem 5.11. Show \mathbb{Q} is not cyclic. Even better, prove that \mathbb{Q} cannot be generated by a finite number of elements.

Proof. First we show that \mathbb{Q} is not cyclic. We will do this by contradiction, so suppose it is cyclic. Then it would be generated by a rational number of the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$. The set $\langle \frac{a}{b} \rangle$ consists of all integer multiples of $\frac{a}{b}$. So if $\mathbb{Q} = \langle \frac{a}{b} \rangle$ then $\frac{a}{2b}$ must be an integer multiple of $\frac{a}{b}$. But if

$$\frac{c}{2b} = \frac{a}{b}$$

then $c = 1/2$ which is not an integer. Therefore \mathbb{Q} cannot be generated by a single rational number, so \mathbb{Q} is not cyclic.

Now we show that \mathbb{Q} cannot be generated by a finite set of rational numbers. Suppose for contradiction that $\mathbb{Q} = \langle \frac{a_1}{b_1}, \ldots, \frac{a_n}{b_n} \rangle$. Since the number $\frac{1}{b_1 \cdots b_n} \in \mathbb{Q}$, there must be integers c_1, \ldots, c_n s.t.

$$c_1 \frac{a_1}{b_1} + \cdots + c_n \frac{a_n}{b_n} = \frac{1}{2b_1 \cdots b_n}$$

By adding together the fractions on the left hand side, we get

$$c_1 \frac{a_1}{b_1} + \cdots + c_n \frac{a_n}{b_n} = \frac{A_1 + \ldots + A_n}{b_1 \cdots b_n}$$

where $A_i = c_ia_ib_1 \cdots b_{i-1}b_{i+1} \cdots b_n$. Write $A = A_1 + \ldots + A_n$ to simplify notation. Note that since the A_i are integers, A must be an integer. So we claim that

$$\frac{A}{b_1 \cdots b_n} = \frac{1}{2b_1 \cdots b_n}$$

This can only happen if $A = 1/2$. But A was supposed to be an integer, so we have arrived at a contradiction. Thus \mathbb{Q} cannot be generated by a finite set of rational numbers. □