Let V and W be a finite-dimensional complex Euclidean vector spaces.

Theorem 1. Let $T : V \to W$ be a linear map. Then there is a unique linear map $S : W \to V$ such that

$$(Tv, w) = (v, Sw) \text{ for all } v \in V \text{ and } w \in W.$$

If we use orthonormal bases for V and for W to represent T and S by matrices, then

$$S_{ij} = T_{ji}.$$

Definition. The map S is called the adjoint of T and is denoted T^*.

Proof. Let e_1, \ldots, e_n and f_1, \ldots, f_m be orthonormal bases for V and for W, respectively. Then

$$(Tv, w) = (T(\sum v_i e_i), \sum w_j f_j)$$

$$= \sum_{i,j} v_i \overline{w_j} (Te_i, f_j)$$

$$= \sum_{i,j} v_i \overline{w_j} \text{(the } f_j \text{ component of } Te_i)$$

$$= \sum_{i,j} v_i \overline{w_j} T_{ji}. \quad (2)$$

Almost exactly the same calculation shows that

$$(v, Sw) = \sum_{i,j} v_i \overline{w_j} \overline{S_{ij}}. \quad (3)$$

Thus if we let S_{ij} is the conjugate of T_{ji} (for all i and j), then (2) and (3) will be equal for all v and w. This establishes the existence of a map S with property (1).

Conversely, if S has the property (1), then (2) and (3) will be equal for all v and w. In particular, they will be equal when $v = e_i$ and $w = f_j$, in which case case (2) is T_{ji} and (3) is the conjugate of S_{ij}. This proves uniqueness. □

Theorem 2. Let V be a finite-dimensional complex Euclidean vector space. A linear map $T : V \to V$ has an orthonormal basis of eigenvectors if and only if $T^* T = TT^*$.

Remark. A linear transformation $T : V \to V$ such that $T^* T = TT^*$ is called normal.
Lemma 1. If $T : V \to V$ is normal, then $|T^*v| = |Tv|$ for all v.

Proof of lemma 1.

$$|T^*v|^2 = (T^*v, T^*v) = (TT^*v, v) = (T^*Tv, v) = (Tv, Tv) = |Tv|^2$$

□

Lemma 2. Suppose $T : V \to V$ is normal. If v is an eigenvector of T with eigenvalue λ, then it is also an eigenvector of T^*, with eigenvalue $\bar{\lambda}$. In other words,

$$Tv = \lambda v \implies T^*v = \bar{\lambda}v.$$

Proof. If T is normal, then so is $(T - \lambda I)$. Thus by lemma 1 applied to $T - \lambda I$,

$$|(T - \lambda I)v| = |(T - \lambda I)^*v| = |T^*v - \bar{\lambda}v|$$

Since $Tv = \lambda v$, the left side is 0. Therefore the right side is 0, which means that $T^*v = \bar{\lambda}v$. □

Proof of theorem 2. Any linear transformation of a complex vector space has at least one eigenvector. So let v_1 be a unit eigenvector for T.

Now suppose we have orthonormal eigenvectors v_1, \ldots, v_k for T. If $k = \dim V$, we are done. If not, let W be the set of all vectors that are orthogonal to v_1, \ldots, v_k:

$$W = \{x \in V : (x, v_i) = 0 \text{ for } i = 1, \ldots, k\}.$$

Then W is an $n - k$ dimensional subspace (where $n = \dim V$.)

Claim: If x is perpendicular to v_i, then so is Tx.

Proof of claim. If x is perpendicular to v_i, then

$$(Tx, v_i) = (x, T^*v_i) = (x, \bar{\lambda_i}v_i) = \lambda(x, v_i) = 0.$$

Thus $(Tx, v_i) = 0$, so Tx is perpendicular to v_i. This proves the claim.

Consequently, if x is perpendicular to all the v_i’s, then so is Tx. In other words,

$$x \in W \implies Tx \in W.$$

Now since T maps W into itself, W contains a unit eigenvector v_{k+1}.

Continuing in this way, we get an orthonormal basis of eigenvectors. □
Special Classes of Normal Transformations

Note that if $T^* = T$, or if $T^* = -T$, or if $T^* = T^{-1}$, then T is normal. These conditions define the following classes of normal operators:

1. The eigenvalues of a normal operator T are real if and only if $T^* = T$. Such a T is called **self-adjoint** or **Hermitian**.

2. The eigenvalues of a normal operator T are imaginary if and only if $T^* = -T$. Such a T is called **skew-adjoint** or **skew-Hermitian**.

3. The eigenvalues of a normal operator T are unit complex numbers (i.e., have norms 1) if and only if $T^* = T^{-1}$. Such a T is called **unitary**.

Unitary operators have other important characterizations:

Proposition. The $T : V \rightarrow V$ be an operator on the finite dimensional complex Euclidean space V. The following are equivalent:

1. T is unitary.
2. $(Tu, Tv) = (u, v)$ for all vectors u and v in V.
3. $|Tv| = |v|$ for all vectors v in V.

Proof. Exercise.