There are several efficient methods for finding a basis for a subspace. To discuss them, it is useful to have some terminology. The “column space” of a \(k \times n \) matrix \(A \) is the set of all linear combinations of the columns. The column space is the same as the image since:

\[
Ax = (\text{column 1 of } A)x_1 + \ldots + (\text{column } n \text{ of } A)x_n.
\]

The row space is the set of all linear combinations of the rows.

A “row operation” on \(A \) is one of the following:

1. adding a multiple of one row to another row,
2. multiplying a row by a nonzero scalar, and
3. switching two rows.

Recall that for each row operation there is a corresponding invertible \(k \times k \) matrix \(E \). In particular, if performing the row operation on \(A \) produces \(A' \), then \(A' = EA \). Of course if we perform a sequence of row operations on \(A \) to get a new matrix \(B \), then

\[
B = E_pE_{p-1}\ldots E_2E_1A = MA,
\]

where \(E_i \) corresponds to the \(i \)th row operation, and \(M \) is the product of the \(E_i \)'s. Thus we have shown:

Proposition 1. If the \(k \times n \) matrix \(B \) is obtained from \(A \) by a sequence of row operations, then

\[
B = MA
\]

for some invertible \(k \times k \) matrix \(M \).

Suppose we want to find a basis for \(W = L(\mathbf{v}_1, \ldots, \mathbf{v}_k) \). We can either:

1. Make a matrix \(A \) whose rows are the \(\mathbf{v}_i \)'s and find a basis for the row space of \(A \) (which is \(W \)), or
2. make a matrix \(A \) whose columns are the \(\mathbf{v}_i \)'s and find a basis for the column space of \(A \).

Such bases may be found quickly with row operations.

To find a basis for the row space of \(A \): Perform row operations to get a matrix \(B \) in reduced row echelon form (rref). The rows of \(B \) are then a basis for \(W \).
(Recall that in each nonzero row of a matrix, the first (or leftmost) position with a nonzero entry is called a \textbf{pivot}. A matrix in rref has at most one pivot in each column.)

Why does this work? Note that row operations do not change the row space. Thus the row space of B is the same as the row space of A which is the same as W.

The reader should as an exercise prove that rref implies that the nonzero row of B form a basis for its row space (and hence for W.)

\textbf{To find a basis for the column space of A:} Perform row operations to get a matrix B in rref. The columns of A corresponding to pivots in B form a basis for the column space of A.

Why does this work? By the discussion above, we know there is an invertible $k \times k$ matrix M such that

\[B = MA. \]

Let the columns of A be A_1, \ldots, A_n and the columns of B be B_1, \ldots, B_n. Then $B_j = MA_j$ for each j.

Claim 1: A_j is a linear combination of A_1, \ldots, A_{j-1} if and only B_j is a combination of B_1, \ldots, B_{j-1}.

Proof: Suppose

(i) \[A_j = c_1 A_1 + \cdots + c_{j-1} A_{j-1}. \]

Multiplying both sides by M gives

(ii) \[B_j = c_1 B_1 + \cdots + c_{j-1} B_{j-1}. \]

Likewise, if we assume (ii), then multiplying by M^{-1} gives (i). This proves claim 1.

Claim 2: B_j is a combination of B_1, \ldots, B_{j-1} if and only if column j of B contains no pivot.

Proof is left to the reader.

Putting claims 1 and 2 together, we see that this method picks out the A_j’s which are not combinations of preceding A_i’s. We already know that those A_j’s do form a basis.

\textbf{Warning:} Though A and B have the same row spaces, their column spaces will generally be different.
Find bases for the row space and for the column space of

\[
A = \begin{bmatrix}
1 & 2 & 1 & 3 & -1 \\
1 & 2 & 2 & 2 & 3 \\
1 & 2 & 3 & 1 & 7
\end{bmatrix}.
\]

Solution: Subtract row 1 from rows 2 and 3:

\[
\begin{bmatrix}
1 & 2 & 1 & 3 & -1 \\
0 & 0 & 1 & -1 & 4 \\
0 & 0 & 2 & -2 & 8
\end{bmatrix}.
\]

Now subtract row 2 from row 1 and twice row 2 from row 3:

\[
B = \begin{bmatrix}
1 & 2 & 0 & 4 & -5 \\
0 & 0 & 1 & -1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

The pivots of \(B\) (which is in rref) are in columns 1 and 3. Thus columns 1 and 3 of \(A\) (namely \((1,1,1)\) and \((1,2,3)\)) form a basis for the column space of \(A\).

The nonzero rows of \(B\), namely \((1, 2, 0, 4, -5)\) and \((0, 0, 1, -1, 4)\), form a basis for the row space of \(A\).