Math 51h Homework 9 (due Friday, November 30, 2001)

1. Let C be the portion of the curve:

$$x + \sqrt{xy} + 3y = 15$$

starting at $A = (1, 4)$ and ending at $B = (9, 1)$. Find $\int_C y^2 \, dx + (2xy + 3y^2) \, dy$.

Solution: Note that $\frac{\partial}{\partial y} (y^2) = 2y = \frac{\partial}{\partial x} (2xy + 3y^2)$ in the convex set \mathbb{R}^2. Thus $F = (y^2)i + (2xy + 3y^2)j$ is the gradient of some function ϕ:

$$\frac{\partial \phi}{\partial x} = y^2 \quad \frac{\partial \phi}{\partial y} = 2xy + 3y^2$$

Integrating the first equation, we see that $\phi = xy^2 + C(y)$. Substituting into the second equation gives

$$\frac{\partial}{\partial y} (xy^2 + C(y)) = 2xy + 3y^2$$

or $2xy + C'(y) = 2xy + 3y^2$ or $C'(y) = 3y^2$ or $C(y) = y^3 + K$. We may as well let $K = 0$. Thus $\phi = xy^2 + y^3$. Now

$$\int_C y^2 \, dx + (2xy + y^3) \, dy = \phi(B) - \phi(A) = (9 \cdot 1^2 + 3 \cdot 1^3) - (1 \cdot 4^2 + 4^3) = -68$$

2(a). Let S be a nonempty closed set in \mathbb{R}^n. Let a be a point in \mathbb{R}^n. Prove that there is a point x in S closest to a. (There may be more than one such point.) **Note:** S may not be bounded.

Solution: Since S is nonempty, there is a point y in S. Let $R = |y - a|$. Let

$$S^* = \{x \in S : |x - a| \leq R\}$$

Let $f(x) = |x - a|$. Then S^* is a closed bounded set and f is a continuous function, so f has a minimum on S^* at some point x_0. That is: $f(x_0) \leq f(x)$ for every $x \in S^*$. But if x is in S but not in S^*, then $f(x) > R \geq f(x_0)$. Thus $f(x_0) \leq f(x)$ for every $x \in S$. □

2(b). Suppose the set S in part (a) is not all of \mathbb{R}^n. Prove that the boundary of S is not empty.
Solution: Since S is not all of \mathbb{R}^n, there is a point $a \in \mathbb{R}^n$ not in S. Let p be a point in S closest to a (this exists by part (a)). Note that every point in the line segment joining a to p is closer to a than p is. Thus none of the points of the line segment (except p) belong to S. Now any ball centered at p must contain points in this segment. Thus p is not the interior of S. Also p itself is in S, so p cannot be an exterior point. Thus p is a boundary point of S. □

3. Suppose $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a continuously differentiable vectorfield and that $D_iF_j = D_jF_i$ for all i and j and at all points of \mathbb{R}^3. Let S be a sphere in \mathbb{R}^3. Prove that there is some point x in S such that $F(x)$ is normal to S at x.

Proof: Since $D_iF = D_jF_i$ throughout \mathbb{R}^3 and since \mathbb{R}^3 is a convex set, F must be the gradient of some function u. If S has center a and radius R, then S is the level set of a smooth function g, namely

$$g(x) = |x - a|^2.$$

(Of course S is the set of all points where $g = R^2$.)

By the extreme value theorem, u has a maximum and minimum value subject to the constraint $g = R^2$. Let $x \in S$ be a point where the maximum (say) occurs. By the lagrange multiplier theorem, $\nabla u(x)$ and $\nabla g(x)$ are linearly dependent. Since $\nabla g(x)$ is not zero, this means

$$(*) \quad \nabla u(x) = \lambda \nabla g(x),$$

where λ is a real number. Now $\nabla g(x)$ is normal to S at x (since S is a level set of g), so $(*)$ implies that $\nabla u(x)$ is normal to S at x. But $F(x) = \nabla u(x)$, so we are done. □