MIDTERM REVIEW PROBLEMS

1. Solve each differential equation.
 (a) \(xy' - 2y - x^3 \sin x = 0 \)
 (b) \(y^3 - 4x + (3xy^2 + 1)y' = 0 \)
 (c) \(xy' - y + e^x y^2 = 0 \)
 (d) \(xy^2 y' = x^3 + y^3, y(1) = 2 \)
 (e) \(xy' = y(y - 2) \)
 (f) \((x^2 + 1)y' = 2xy + 2x(x^2 + 1) \)
 (g) \(y' = \frac{3x - 2y}{y + 2x} \)
 (h) \(\frac{1}{x+1} x' + \frac{2}{x} \tan^{-1} x = \frac{2}{x} \)

2. Compute
 \[
 \det \begin{bmatrix}
 4 & 4^2 & 4^3 & 4^4 \\
 4^5 & 4^6 & 4^7 & 4^8 \\
 4^9 & 4^{10} & 4^{11} & 4^{12} \\
 4^{13} & 4^{14} & 4^{15} & 4^{16}
 \end{bmatrix}.
 \]

3. Let
 \[
 \begin{bmatrix}
 3 & -1 \\
 3 & -1
 \end{bmatrix}.
 \]
 (a) Determine the eigenvalues and eigenvectors of \(A \).
 (b) Compute \(A^{2005} \).

4. Let \(A \) be an \(n \times n \) matrix such that \(A^n \) is the zero matrix, and \(A^k \) is NOT the zero matrix for \(k = 1, 2, \ldots, n - 1 \). Let \(v \in \mathbb{R}^n \) such that \(v \) is NOT in the nullspace of \(A^{n-1} \). Prove that the set
 \[\{ v, Av, A^2v, \ldots, A^{n-1}v \} \]
 is linearly independent.

5. If \(A \) is a square matrix, prove that \(A^T A = I \) if and only if the column vectors of \(A \) are mutually orthogonal unit vectors.
6. Let \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) be distinct points in \(\mathbb{R}^2 \). Show that the equation
\[
\det \begin{bmatrix}
x & y & 1 \\
x_1 & y_1 & 1 \\
x_2 & y_2 & 1
\end{bmatrix} = 0
\]
is that of a the straight line through \(P_1 \) and \(P_2 \).

7. Prove that taking the transpose of a matrix is a linear transformation of set of \(m \times n \) matrices to the set of \(n \times m \) matrices.

8. If \(A \) and \(B \) are matrices that commute, prove that \(A^2 \) and \(B^2 \) also commute.

9. A permutation matrix has one nonzero element in each row and one nonzero element in each column, and each nonzero element is equal to one. Show that the determinant of such a matrix is either 1 or -1.

10. Let \(A \) be a square matrix. Prove that \(A + A^T \) is a symmetric matrix.

11. If \(A \) is an \(n \times 1 \) matrix, and \(B \) is a \(1 \times n \) matrix, with \(n > 1 \), prove that the \(n \times n \) matrix \(AB \) has determinant equal to zero.

12. Define the trace of an \(n \times n \) matrix to be the sum of the diagonal elements, that is \(tr(A) = a_{11} + a_{22} + \ldots + a_{nn} \).

 (a) Prove that \(tr(A) \) is a linear transformation from the set of \(n \times n \) matrices to \(\mathbb{R} \).

 (b) Prove that for all \(n \times n \) matrices \(A \) and \(B \), we have
 \[
 tr(AB) = tr(BA).
 \]

 (c) Prove that there do not exist square matrices such that
 \[
 AB - BA = I.
 \]