Math 139
Mathematics of Medical Imaging
Problem Set # 1
Due Thursday, January 20

The first set of problems concern the shadow function \(h_D(\theta) \) defined for a convex planar region \(D \). As in class, we parametrize the boundary curve as \((x(\theta), y(\theta))\), \(0 \leq \theta \leq 2\pi\).

1. Suppose \(D \) is translated by a vector \(v \in \mathbb{R}^2 \). Give an explicit description for the shadow function of this translated region in terms of the original shadow function \(h_D \). Similarly, describe the effect on the shadow function \(h_D \) of rotating \(D \) by an angle \(\theta_0 \).

2. Suppose that \(D_n \) is a regular convex polygon centered at the origin. What is its shadow function? How much can you say about the shadow function of a more general convex polygon?

3. Let \(h(\theta) \) be any twice differentiable, \(2\pi\)-periodic function which satisfies \(h''(\theta) + h(\theta) > 0 \) for every \(\theta \). Define a curve \(\gamma \) which is parametrized by
\[
(x(\theta), y(\theta)) = h(\theta)\omega(\theta) + h'(\theta)\dot{\omega}(\theta),
\]
where \(\omega(\theta) = (\cos \theta, \sin \theta) \) and \(\dot{\omega}(\theta) = \omega'(\theta) \). Show that \(\gamma \) is the boundary of a convex region. Prove that the curvature of \(\gamma \) is equal to \(1/(h''(\theta) + h(\theta)) \). (Recall that the curvature \(\kappa = |dN/ds| \), where \(N \) is the unit normal vector to \(\gamma \) and \(s \) is the arclength parameter along \(\gamma \).)

4. Let \(A \) be any invertible \(n \times n \) matrix. Show that its condition number \(c_A \) is also given by the expression
\[
c_A = \left(\max_{x \neq 0} \frac{||Ax||}{||x||} \right) / \left(\min_{x \neq 0} \frac{||Ax||}{||x||} \right).
\]

5. Suppose that \(A \) is a symmetric matrix and that its eigenvalues are \(0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \). Show that \(c_A = \lambda_n / \lambda_1 \). For a general (not necessarily symmetric) matrix \(A \), form the symmetric matrix \(A^*A \). Show that
\[
c_A = \sqrt{c_A A^*A}.
\]