Math 174b, Problem Set 3

Due Friday, 12 May

1. Suppose that u solves the inhomogeneous wave equation $\partial_t^2 u = \triangle u + F(x, t)$. Let u' denote the space and time derivatives of u: $(\partial_t u, \nabla_x u)$. Recall that the energy of the function u at time t is denoted $E(t)$ and is given by the formula $E(t) = \int_{\mathbb{R}^n} |u'|^2 dx$. Prove the following formula for the time-derivative of the energy.

$$\frac{d}{dt} E(t) = 2 \int_{\mathbb{R}^n} F(x, t) \partial_t u(x, t) dx.$$

You may recall from high school physics that Energy = Force \times distance. Therefore, $\frac{d}{dt}$ Energy = Force \times velocity. This high-school formula is consistent with the formula above, because $\partial_t u$ can be thought of as a velocity (say of an elastic membrane).

Using the last formula and the Cauchy-Schwarz inequality, give another proof of the following inequality.

$$E(t)^{1/2} \leq E(0)^{1/2} + \int_0^t \|F(\cdot, \tau)\|_2 d\tau.$$

2. Let p be a number in the range $0 < p < 1$. Let f be a Schwartz function on \mathbb{R}^n. Suppose that f obeys the following inequality:

$$\int_{\mathbb{R}^n} |\nabla f|^p dx \leq 1.$$

Prove that nevertheless the function f may be arbitrarily large. More precisely, given any radius R and any number M, it may happen that $f(x) \geq M$ for x in the ball of radius R around 0.

Conclude that if $p < 1$, then there is no analogue of the Sobolev inequality involving $\|\nabla f\|_p$.

3. Let $u(x, t)$ be a function on $\mathbb{R}^3 \times \mathbb{R}$, solving the wave equation $\partial_t^2 u = \triangle u$, with initial conditions $u(x, 0) = 0$ and $\partial_t u(x, 0) = g(x)$. Recall that $u(x, t)$ is given by the explicit formula $u(x, t) = t M_t g(x)$, where $M_t g(x)$ denotes the average value of g on the sphere of radius t around x. Prove the following estimate controlling the decay of the function u, for $t > 0$.

$$|u(x, t)| \leq C (1 + t)^{-1} (\|g\|_1 + \|\nabla g\|_1 + \|\nabla^2 g\|_1).$$

[Hint: Try the cases $t > 1$ and $t < 1$ separately. I think $t > 1$ is easier.]

4. (open-ended problem) Using the slicing idea, return to problem 4 on the last homework. If you solve it, here are some variations you could tackle.

a. Let U be a bounded open set in \mathbb{R}^n. Let U_i denote the projection of U onto the hyperplane perpendicular to the x_i axis. Let $|U|$ denote the volume of U and $|U_i|$ denote the (n-1)-dimensional volume of U_i. Prove the following formula.

$$|U| \leq \prod_{i=1}^n |U_i|^\frac{1}{n-1}.$$

b. Let f be a Schwartz function on \mathbb{R}^n. Let f_i be the function defined on the coordinate plane perpendicular to the x_i axis by the following formula.
\(f_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) = \sup_{t \in \mathbb{R}} |f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_n)|. \)

Prove the following function-theoretic analogue of the inequality in a.

\[
\|f\|_{\infty} \leq \prod_{i=1}^{n} \|f_i\|_{1}^{1/n}.
\]

c. Using the fundamental theorem of calculus, prove that \(\|f_i\|_{1} \leq (1/2)\|\partial_i f\|_{1} \).

Combining this result with the one in b., prove the Gagliardo-Nirenberg-Sobolev inequality.

\[
\|f\|_{\infty} \leq \prod_{i=1}^{n} \|\partial_i f\|_{1}^{1/n}.
\]

d. Let \(U \) be a bounded open set in \(\mathbb{R}^n \). Let \(P_I \) be the \(k \)-dimensional coordinate plane with axes \(x_{i_1}, \ldots, x_{i_k} \), where \(I \) is the sequence of indices \((i_1, \ldots, i_k)\). Let \(U_I \) denote the projection of \(U \) onto \(P_I \). In the notation of part a., \(U_1 \) corresponds to \(U_I \) for \(I = (2, \ldots, n) \). Let \(|U| \) denote the volume of \(U \), and let \(|U_I| \) denote the volume of \(U_I \). Figure out what happens.