HOMEWORK 3 - 51 TRACK

Instructions: Complete the following problems.

(1) From Levandosky’s Linear Algebra, do the following exercises:

- Section 11: 5
- Section 12: 13
- Section 13: 1, 4, 8, 11, 15, 17, 18
- Section 14: 3, 4, 11
- Section 15: 1, 3

(2) Let A be a 4×4 matrix and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4. We are told that the system $A \vec{x} = \vec{b}$ has a unique solution. What can you say about the number of solutions of the system $A \vec{x} = \vec{c}$?

(3) Let A be a 4×4 matrix and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4. We are told that the system $A \vec{x} = \vec{b}$ is inconsistent. What can you say about the number of solutions of the system $A \vec{x} = \vec{c}$?

(4) Let A be a 4×3 matrix and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4. We are told that the system $A \vec{x} = \vec{b}$ has a unique solution. What can you say about the number of solutions of the system $A \vec{x} = \vec{c}$?

(5) Can you find a 3×3 matrix so that $N(A) = C(A)$? (Hint: think about the rank-nullity theorem).

(6) Consider two subspaces V and W of \mathbb{R}^n, where V is itself a subset of W. Prove that $\dim(V) \leq \dim(W)$.