Sparse Coding and Dictionary Learning

Yuan Yao and Ruohan Zhan
Peking University
Reference: Andrew Ng

Sparse Coding

- The aim is to find a set of basis vectors (dictionary) ϕ_i such that we can represent an input vector x as a linear combination of these basis vectors:

$$x = \sum_{i=1}^{k} a_i \phi_i$$

- PCA: a complete basis
- Sparse coding: an overcomplete basis to represent $x \in \mathbb{R}^n$ (i.e. such that $k > n$)
 - The coefficients a_i are no longer uniquely determined by the input vector x
 - Need additional criterion of sparsity to resolve the degeneracy introduced by over-completeness.
Sparsity Penalty

- We define the sparse coding cost function on a set of \(m \) input vectors as

\[
\text{minimize}_{a_i^{(j)}, \phi_i} \sum_{j=1}^{m} \left\| x^{(j)} - \sum_{i=1}^{k} a_i^{(j)} \phi_i \right\|^2 + \lambda \sum_{i=1}^{k} S(a_i^{(j)})
\]

where \(S(.) \) is a sparsity cost function which penalizes \(a_i \) for being far from zero.

- "L_0-norm": \(S(a_i) = 1(|a_i| > 0) \)
- \(L_1 \) penalty: \(S(a_i) = |a_i|_1 \)
- log penalty: \(S(a_i) = \log(1 + a_i^2) \)
Scale freedom

- In addition, it is also possible to make the sparsity penalty arbitrarily small by scaling a_i down and scaling ϕ_i up by some large constant.
- To prevent this from happening,

\[
\begin{align*}
\text{minimize}_{a_i^{(j)}, \phi_i} & \quad \sum_{j=1}^{m} \left\| x^{(j)} - \sum_{i=1}^{k} a_i^{(j)} \phi_i \right\|^2 + \lambda \sum_{i=1}^{k} S(a_i^{(j)}) \\
\text{subject to} & \quad \left\| \phi_i \right\|^2 \leq C, \forall i = 1, ..., k
\end{align*}
\]

Olshausen and Field 1996
Identifiability: Scale

- One can remove the scale degree of freedom either in constraint form

\[
\text{minimize} \quad \|As - x\|_2^2 + \lambda \|s\|_1 \\
\text{s.t.} \quad A_j^T A_j \leq 1 \ \forall j
\]

- Or Lagrangian form:

\[
J(A, s) = \|As - x\|_2^2 + \lambda \|s\|_1 + \gamma \|A\|_2^2
\]

where \(\|A\|_2^2 := \text{trace}(A^T A) \) is simply the sum of squares of the entries of A (squared Frobenius norm)
Nonlinear Optimization

\[J(A, s) = \|As - x\|_2^2 + \lambda \|s\|_1 + \gamma \|A\|_2^2 \]

- Bi-variate cost: not jointly convex, not differentiable
- But \(J(A,s) \) is convex in \(A \) fixed \(s \), and convex in \(s \) fixed \(A \).
Alternating Optimization

- Initialize A randomly
- Repeat until convergence
 - Find the s that minimizes $J(A,s)$ for the A found in the previous step (LASSO)
 - Solve for the A that minimizes $J(A,s)$ for the s found in the previous step (Ridge Regression -> SVD)
Smoothing

- So our final objective function:

\[
J(A, s) = \| As - x \|_2^2 + \lambda \sqrt{s^2 + \epsilon} + \gamma \| A \|_2^2
\]

- where \(\sqrt{s^2 + \epsilon} \) is shorthand for \(\sum_k \sqrt{s_k^2 + \epsilon} \)
- the third term \(\| A \|_2^2 \) is simply the sum of squares of the entries of A (squared Frobenius norm)
- Then you have a smooth objective function, restricted convex in A and s
- Gradient descent such as BP algorithm can be applied here
Dictionary Learned from natural image patches

Adjacent features should be similar?
Topographic Sparse Coding: Group LASSO

- Group adjacent features in group LASSO norm

\[
J(A, s) = \|As - x\|_2^2 + \lambda \sum_{\text{all groups } g} \sqrt{\left(\sum_{s \in g} s^2\right)} + \epsilon + \gamma \|A\|_2^2
\]

- Example: 3-by-3 neighborhood as ‘adjacency’

\[
\sqrt{s_{1,1}^2 + \epsilon} \rightarrow \sqrt{s_{1,1}^2 + s_{1,2}^2 + s_{1,3}^2 + s_{2,1}^2 + s_{2,2}^2 + s_{3,2}^2 + s_{3,1}^2 + s_{3,2}^2 + s_{3,3}^2 + \epsilon}
\]
A Neural Network Interpretation: Sparse Autoencoder

- Single-hidden layer NN, to learn features A to reconstruct signals x
- Encoding: $s = A^T x$
- Decoding: $A s$
- Sample torch codes: https://github.com/torch/tutorials/blob/master/3_unsupervised/2_models.lua

```lua
-- encoder
encoder = nn.Sequential()
encoder:add(nn.Linear(inputSize, outputSize))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputSize))

-- decoder
decoder = nn.Sequential()
decoder:add(nn.Linear(outputSize, inputSize))

-- tied weights
if params.tied and not params.hessian then
    -- impose weight sharing
    decoder:get(1).weight = encoder:get(1).weight:transpose()
    decoder:get(1).gradWeight = encoder:get(1).gradWeight:transpose()
end
```
Other structures?
--- Tight frame

- Encoding: \(A^T x \) (easy)
- Decoding: \(As \)

\[
J(A, s) = \|As - x\|_2^2 + \lambda \sqrt{s^2 + \epsilon} + \gamma \|A\|_2^2
\]

- That \(A \) is a basis requires: \(AA^T = A^T A = I \)
- That \(A \) is a tight frame satisfies: \(AA^T = I \iff \|x\|_2 = \|A^T x\|_2, \forall x \)
- Replace reconstruction error to representation error:

\[
J(A, s) = \|s - A^T x\|_2^2 + \lambda \sqrt{s^2 + \epsilon} + \gamma \|A\|_2^2
\]

- LASSO (fixed \(A \), find \(s \)) is simply a soft thresholding
- \(L0 \) regularization leads to hard thresholding
When does Dictionary Learning work?

- Daniel Spielman, Huan Wang, and John Wright, *Exact Recovery of Sparsely-Used Dictionaries*, arXiv:1206.5882