MATH 52 MIDTERM I OCTOBER 14, 2009

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED.

THERE IS ONLY ONE INTEGRAL EVALUATION, IN PROBLEM 3(a). THERE ARE 5 PROBLEMS WORTH 10 POINTS EACH, ON 7 PAGES (INCLUDING COVER PAGE).

Please sign the following, and print your name neatly:

"On my honor, I have neither given nor received any aid on this examination. I have furthermore abided by all other aspects of the honor code with respect to this examination."

SIGNATURE: ____________________________

Here are some formulas relating rectangular coordinates x, y, z, cylindrical coordinates r, θ, z, and spherical coordinates ρ, ϕ, θ:

\[
\begin{align*}
 z &= \rho \cos(\phi) \\
 r &= \rho \sin(\phi) \\
 x &= r \cos(\theta) = \rho \sin(\phi) \cos(\theta) \\
 y &= r \sin(\theta) = \rho \sin(\phi) \sin(\theta).
\end{align*}
\]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. Suppose D is a thin plate in the first quadrant bounded by the y-axis, the curve $y = x^2$ and the line $x + y = 2$. Suppose the mass density function on D is given by

$$
\delta(x, y) = \begin{cases}
x & \text{if } 0 \leq y \leq 1 \\
xy & \text{if } 1 \leq y
\end{cases}
$$

(a) Sketch plate D.

The line $x + y = 2$ connects $(2, 0)$ and $(0, 2)$, and intersects the parabola $y = x^2$ at $(1, 1)$ in the first quadrant. So the shape is triangle-like, with straight edges from $(0, 0)$ to $(0, 2)$ and from $(0, 2)$ to $(1, 1)$, then a curved edge on the parabola from $(0, 0)$ to $(1, 1)$.

(b) Express the total mass of plate D in terms of one or more explicit iterated integrals in the order $\int \int - dy \ dx$. DO NOT EVALUATE.

[Explicit means specific integrands and limits of integration, not symbols like δ.]

Although the shape has an easy y-simple description $0 \leq x \leq 1, x^2 \leq y \leq 2 - x$, since the density changes formulas across the line $y = 1$ in order to get explicit integrals it is necessary to regard the plate as two separate y-simple regions and add the masses of each, in order to write $\int_0^1 \int_{x^2}^{2-x} \delta(x, y) \ dy \ dx$ in terms of explicit integrals.

Total mass = $\int_0^1 \int_{x^2}^{2-x} x \ dy \ dx + \int_1^2 \int_1^{2-y} xy \ dy \ dx$.

(c) Express the total first moment of plate D with respect to the y-axis ($x = 0$), in terms of one or more explicit integrated integrals in the order $\int \int - dx \ dy$. DO NOT EVALUATE.

Regarded as an x-simple region, the "upper" boundary curve $x = d(y)$ is now given by two separate formulas, $x = d(y) = \sqrt{y}$ for $0 \leq y \leq 1$ and $x = d(y) = 2 - y$ for $1 \leq y \leq 2$. The moment with respect to the line $x = 0$ is the integral $\int \int_D x\delta(x, y) \ dx \ dy$. Again we must also take into account the two formulas for δ, as well as the two upper boundary curves, in order to get explicit integrals.

Total moment $M_{(x=0)} = \int_0^1 \int_0^{\sqrt{y}} x^2 \ dx \ dy + \int_1^2 \int_0^{2-y} x^2 \ dy \ dx$.
2. Consider a solid \(W \) in the first octant \(x \geq 0, \ y \geq 0, \ z \geq 0 \) that is also bounded by the two cylinders \(x^2 + y^2 = 4 \) and \(y^2 + z^2 = 4 \). Suppose the electrical charge density on \(W \) is given by the function \(x \).

(a) Express the total electrical charge on \(W \) as an explicit iterated integral in rectangular coordinates in the order \(\int \int \int -dz \ dx \ dy \). DO NOT EVALUATE.

The order of integration demands that we view the solid as \(z \)-simple. It is in the first quadrant, and the shadow in the \(xy \)-plane will be the quarter disk \(0 \leq x, \ 0 \leq y, \ x^2 + y^2 \leq 4 \) because the solid is inside the cylinder \(x^2 + y^2 = 4 \). In rectangular coordinates the shadow is then \(0 \leq y \leq 2, \ 0 \leq x \leq \sqrt{4 - y^2} \). The ‘floor’ of the solid in the \(z \)-direction is \(z = 0 \) and the ‘ceiling’ is \(z = \sqrt{4 - y^2} \), since the solid is also inside the cylinder \(y^2 + z^2 = 4 \). So the answer is
\[
\int_0^2 \int_0^\sqrt{4-y^2} \int_0^{\sqrt{4-y^2}} x \ dz \ dx \ dy.
\]

(b) Express the total electric charge on \(W \) as an explicit integral in cylindrical coordinates. DO NOT EVALUATE.

The shadow is now described in polar coordinates by \(0 \leq \theta \leq \pi/2, \ 0 \leq r \leq 2 \). We then just change the integral in part (a) to cylindrical coordinates, and get
\[
\int_0^{\pi/2} \int_0^2 \int_0^{\sqrt{4-r^2\sin^2\theta}} r\cos\theta \ r \ dz \ dr \ d\theta.
\]
3(a). EVALUATE the following double integral:
\[\int \int_R e^{(-x^2-y^2)} \, dA, \]
where \(R \) is the plane region defined by \(1 \leq x^2 + y^2 \leq 2 \).
We use polar coordinates
\[\int_0^{2\pi} \int_1^{\sqrt{2}} e^{-r^2} r \, dr \, d\theta = 2\pi \left(\frac{1}{e} - \frac{1}{e^2} \right). \]

(b) Consider a spatial object \(W \) inside the sphere \(x^2 + y^2 + z^2 = 4 \) and above the cone \(z = r = \sqrt{x^2 + y^2} \), with density given by \(\delta(x, y, z) = z \). If \((\bar{x}, \bar{y}, \bar{z})\) is the center of mass of \(W \), then two of the three coordinates are 0. Which two, and briefly say why? Write a formula for the third center of mass coordinate of as a quotient of two explicit integrals expressed in spherical coordinates. DO NOT EVALUATE.

The object is an ‘ice cream cone’. The surfaces \(x^2 + y^2 + z^2 = 4 \) and \(z = r = \sqrt{x^2 + y^2} \) intersect over the circle \(x^2 + y^2 = 2 \) and in the plane \(z = \sqrt{2} \). Thus the spherical coordinate description of the object is \(0 \leq \phi \leq \pi/4 \) \(0 \leq \rho \leq 2 \), \(0 \leq \theta \leq 2\pi \). The object is symmetric about the \(xz \)-plane and the \(yz \)-plane. Also, the density function \(z \) is symmetric about these planes, so each piece of mass-moment on one side of these planes is balanced by an equivalent mass-moment piece on the other side. So \(\bar{y} = 0 \) and \(\bar{x} = 0 \).

\[\bar{z} = \frac{M_{(z=0)}}{\text{total mass}} = \frac{\int \int_W z \delta \, dV}{\int \int_W \delta \, dV} = \frac{\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 (\rho \cos(\phi))^2 \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta}{\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 \rho \cos(\phi) \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta}. \]
4(a). Consider a thin plate in the xy-plane over a region R, with mass density given by $\delta(x, y) = e^x e^y$ for $(x, y) \in R$. Write down a formula as an integral over region R for the moment $M_{(y=b)}$ of plate R with respect to the horizontal line $y = b$, where b is some constant.

$$M_{(y=b)} = \int \int_R (y - b)e^x e^y \, dxdy$$

(b) Derive the value of b from part (a) so that $M_{(y=b)} = 0$. Your answer should be expressed in terms of integrals over region R.

Setting $0 = \int \int_R (y - b)e^x e^y \, dxdy$, we get

$$0 = \int \int_R ye^x e^y \, dxdy - b \int \int_R e^x e^y \, dxdy = \int \int_R ye^x e^y \, dxdy - b \int \int_R e^x e^y \, dxdy.$$

We solve for b and get

$$b = \frac{\int \int_R ye^x e^y \, dxdy}{\int \int_R e^x e^y \, dxdy}.$$

(c) If the shape of plate R in part (a) is symmetrical about the y-axis, what can you say about the center of mass (\bar{x}, \bar{y}) of the plate?

Always $\bar{y} = b$, where b is the value calculated in part (b). With the assumed symmetry about the y-axis, you can also say $\bar{x} > 0$ since geometrically small pieces of the plate near (x, y) for $x > 0$ match small pieces near $(-x, y)$, but the density $e^x e^y > e^{-x} e^y$ is greater on the positive side. So there is more moment on the positive side.
5(a). Suppose R^* is the rectangle $a \leq u \leq b$, $c \leq v \leq d$ in the uv-plane. Partition R^* into small rectangles using a grid of vertical and horizontal lines at u-values $a = u_0 < u_1 < u_2 < \ldots < u_n = b$ and v-values $c = v_0 < v_1 < v_2 < \ldots < v_m = d$. Suppose $T(u,v) = (x(u,v), y(u,v))$ is a 1-1 differentiable transformation from the uv-plane to the xy-plane, with $T(R^*) = R$, a region in the xy-plane. If $f(x,y)$ is a continuous function on R, approximate $\int \int_{R^*} f(x,y) \, dA$ by a double sum involving the points (u_i, v_j), the function f, the functions $x(u,v)$ and $y(u,v)$ and their partial derivatives, and the small rectangle widths and heights $\Delta u_i = u_i - u_{i-1}$ and $\Delta v_j = v_j - v_{j-1}$, for $1 \leq i \leq n$ and $1 \leq j \leq m$.

We just want the double sum called for here, no discussion. Some discussion is requested in Problem 5(c).

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(x(u_i, v_j), y(u_i, v_j)) \left| \det \begin{pmatrix} \frac{\partial x}{\partial u}(u_i, v_j) & \frac{\partial x}{\partial v}(u_i, v_j) \\ \frac{\partial y}{\partial u}(u_i, v_j) & \frac{\partial y}{\partial v}(u_i, v_j) \end{pmatrix} \right| \Delta u_i \Delta v_j$$

5(b) Express the limit of your double sum in Problem 5(a), as all Δu_i and Δv_j approach 0, as an integral over rectangle R^* in the uv-plane.

$$\int_{a}^{b} \int_{c}^{d} f(x(u,v), y(u,v)) \left| \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \right| \, du \, dv$$
5(c) Give a brief geometric explanation of why your double sum in Problem 5(a) should closely approximate \(\int \int_R f(x, y) \, dA \) if all \(\Delta u_i \) and \(\Delta v_j \) are very small.

Nobody said transformation \(T \) was linear.

The \(mn \) small rectangles in \(R^* \) whose sides are vectors \((\Delta u_i, 0)\) and \((0, \Delta v_j)\) are transformed by \(T \) into \(mn \) small regions \(A_{ij} \) in \(R \) with perhaps 4 curved sides. These small regions fill up \(R \), and their diameters will be small if all \(\Delta u_i \) and \(\Delta v_j \) are very small.

Let \(\Delta A_{ij} \) denote the area of small piece \(A_{ij} \). The point \((x_i, y_j) = T(u_i, v_j) = (x(u_i, v_j), y(u_i, v_j))\) lies in small piece \(A_{ij} \) in \(R \). Therefore the double integral \(\int \int_R f(x, y) \, dA \) will be closely approximated by the Riemann sum

\[
\sum_{i=1}^n \sum_{j=1}^m f(x(u_i, v_j), y(u_i, v_j)) \Delta A_{ij}
\]

since the definition of the double integral \(\int \int_R f(x, y) \, dA \) is the limit of such double sums as the diameters of the pieces goes to 0.

But piece \(A_{ij} \) is almost a parallelogram, obtained by replacing \(T \) by its best ‘linear approximation’ at point \((u_i, v_j)\). The sides of this approximating parallelogram are determined by the derivative of \(T \) at point \((u_i, v_j)\). Specifically, the sides of this small parallelogram are the vectors \(\Delta u_i (\partial x/\partial u(u_i, v_j), \partial y/\partial u(u_i, v_j)) \) and \(\Delta v_j (\partial x/\partial v(u_i, v_j), \partial y/\partial v(u_i, v_j)) \).

So the areas \(\Delta A_{ij} \) are, with very small percentage area, approximated by

\[
\left| \det \begin{pmatrix} \partial x/\partial u(u_i, v_j) & \partial x/\partial v(u_i, v_j) \\ \partial y/\partial u(u_i, v_j) & \partial y/\partial v(u_i, v_j) \end{pmatrix} \right| \Delta u_i \Delta v_j.
\]

So you can replace the terms \(\Delta A_{ij} \) in the double sum above by these last determinant expressions, and the limit will be the same, namely \(\int \int_R f(x, y) \, dA \). But this substitution gives exactly the double sum given as the answer to part (a) of this question, namely

\[
\sum_{i=1}^n \sum_{j=1}^m f(x(u_i, v_j), y(u_i, v_j)) \left| \det \begin{pmatrix} \partial x/\partial u(u_i, v_j) & \partial x/\partial v(u_i, v_j) \\ \partial y/\partial u(u_i, v_j) & \partial y/\partial v(u_i, v_j) \end{pmatrix} \right| \Delta u_i \Delta v_j.
\]