SOLUTIONS TO THE SAMPLE EXAM PROBLEMS

1. Let A be an $n \times n$ self-adjoint matrix. (That is, assume $A^* = A$.) Prove that all the eigenvalues of A are real.

Solution: The fundamental property of the adjoint is:

$$(Au, v) = (u, A^*v).$$

Thus if $A^* = A$, then

$$(Au, v) = (u, Av).$$

Let $u = v$ be an eigenvector with eigenvalue λ. Then (\dagger) becomes:

$$(\lambda v, v) = (v, \lambda v)$$

or

$$\lambda(v, v) = \overline{\lambda}(v, v)$$

or

$$\lambda |v|^2 = \overline{\lambda} |v|^2.$$

Since $v \neq 0$, this implies that $\lambda = \overline{\lambda}$, i.e., λ is real. \(\square\)

2. Suppose A is a self-adjoint $n \times n$ matrix. Suppose u and v are eigenvectors with different eigenvalues. Prove that u and v are perpendicular.

Solution Let u have eigenvalue μ and v have eigenvalue λ. Then (\dagger) above becomes

$$(\mu u, v) = (u, \lambda v)$$

or

$$\mu(u, v) = \overline{\lambda}(u, v).$$

But the eigenvalues of a self-adjoint operator are real, so

$$\mu(u, v) = \lambda(u, v).$$

Since $\mu \neq \lambda$, this implies $(u, v) = 0$.

3. Prove (as in 2) that u and v are perpendicular, assuming A is normal (i.e., $AA^* = A^*A$) but not necessarily self-adjoint.

Solution: Recall that, for normal operators, $Aw = \lambda w$ if and only if $A^*w = \overline{\lambda}w$. (See lemma 2 of the lecture notes on normal operators.)

Let $Av = \lambda v$ and $Au = \mu u$, $\lambda \neq \mu$.

Typeset by A\LaTeX
Case 1: \(\lambda = 0 \). Then
\[
(u, v) = \frac{1}{\mu} (Au, v) = \frac{1}{\mu} (u, A^* v) = 0.
\]

Case 2: If \(\lambda \neq 0 \), apply case 1 to the normal operator \(B = A - \lambda I \).

4. Let \(V \) be a finite-dimensional complex vector space and \(T : V \to V \) be a linear operator. Suppose the only eigenvalue of \(T \) is 0. Prove that \(T^k = 0 \) for some \(k \).

Solution 1: We know \(V \) has a basis \(v_1, \ldots, v_n \) of generalized eigenvectors of \(T \). The only eigenvalue is 0, so for each \(i \), there is an \(m(i) \) so that
\[
(T - 0I)^{m(i)} v_i = 0.
\]
But then if we let \(m = \max\{m(1), \ldots, m(n)\} \),
\[
T^m (c_1 v_1 + \ldots + c_n v_n) = c_1 T^m v_1 + \cdots + c_n T^m v_n = 0.
\]
Thus \(T^m x = 0 \) for every \(x \), so \(T^m = 0 \).

Solution 2:

5. Let \(A \) be an \(n \times n \) real matrix such that \(Ax \) is nonzero and perpendicular to \(x \) for every nonzero \(x \). Prove that \(n \) is even.

Solution: We know that if \(n \) is odd, then \(A \) has a real eigenvalue \(\lambda \). Associated with \(\lambda \), there is a real eigenvector \(v \). Then
\[
0 = (Av) \cdot v = (\lambda v) \cdot v = \lambda |v|^2.
\]
Since \(v \neq 0 \), this means \(\lambda = 0 \), which means \(Av = 0 \), which contradicts the hypothesis. Thus \(n \) cannot be odd.

6. Suppose for a certain matrix \(A \) that
\[
A^2 - 3A + 2I = 0.
\]

(a) Prove that if \(\lambda \) is an eigenvalue of \(A \), then \(\lambda = 1 \) or \(\lambda = 2 \).

Solution: Let \(v \) be an eigenvector with eigenvalue \(\lambda \). Then
\[
0 = (A^2 - 3A + 2I)v = A(Av) - 3Av + 2v
= A(\lambda v) - 3\lambda v + 2v
= \lambda^2 v - 3\lambda v + 2v
= (\lambda^2 - 3\lambda + 2)v
= (\lambda - 2)(\lambda - 1)v.
\]
Thus (since $v \neq 0$) we must have $(\lambda - 2)(\lambda - 1) = 0$, which means $\lambda = 2$ or $\lambda = 1$.

(b)* Prove that either 1 or 2 must be an eigenvalue of A. (Both may be.)

Solution: Let v be any nonzero vector. Then

$$0 = (A^2 - 3A + 2I)v = (A - 2I)(A - I)v.$$

Let $u = (A - I)v$. If $u = 0$, then v is an eigenvector with eigenvalue 1. If $u \neq 0$, then u is an eigenvector with eigenvalue 2 (since $(A - 2I)u = 0$).

NOTE: The hypotheses of the problem do NOT imply that 1 and 2 are both eigenvectors, for note that $A = I$ and $A = 2I$ both satisfy the equation $A^2 - 3A + 2I = 0$.

7. Suppose $T : V \to V$ is a linear operator on d-dimensional complex vector space V and that T has d distinct eigenvalues $\lambda_1, \ldots, \lambda_d$. Prove that

$$T^n v \to 0 \quad \text{for all } v$$

if and only if $|\lambda_i| < 1$ for every i.

Solution: We know that when there are $d = \dim V$ distinct eigenvalues, then the corresponding eigenvectors x_1, \ldots, x_d form a basis for V.

Any vector v is a combination of the basis vectors:

$$v = c_1 x_1 + \cdots + c_d x_d,$$

so

$$T^n v = c_1 T^n x_1 + \cdots + c_d T^n x_d = c_1 \lambda_1^n x_1 + \cdots + c_d \lambda_d^n x_d.$$

Since each of these d terms goes to 0 as $n \to \infty$, their sum also does.

8. Suppose V is a finite dimensional vector space and that W is a k-dimensional subspace. Prove that there is a basis for V whose first k elements are a basis for W.

Solution: Let w_1, \ldots, w_k be a basis for W and v_1, \ldots, v_d be a basis for V. Then

$$w_1, \ldots, w_k, v_1, \ldots, v_d$$

spans V, so we know that we get a basis for V by eliminating the vectors in this list that are linear combinations of preceding vectors. Since the w's are independent, none of them gets eliminated. Thus we get a basis for V consisting of all of the w's plus some of the v's.

9. Let M be a 3×3 real symmetric matrix with eigenvectors $u = (1, 2, 3)$ and $v = (-1, -1, 1)$. Find a third eigenvector (not just a scalar multiple of u or v.)
Solution: Since M is symmetric (and real), \mathbb{R}^3 has an orthogonal basis of eigenvectors. We are given two, so the third must be perpendicular to those two. We can either get such a vector as $u \times v$, or we can solve

$$u \cdot x = 0, \quad v \cdot x = 0$$

or

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & 1 \end{bmatrix} x = 0.$$

For instance, $(5, -4, 1)$ is such a vector.

10. Let T be a 3×3 matrix all of whose entries are positive real numbers. Prove that T has an eigenvector whose components are all nonnegative real numbers. (In fact the components will all be positive.)

Solution: Let K be the triangle with corners at e_1, e_2, and e_3.

(In other words, K is the set of $p = (p_1, p_2, p_3)$ such that each p_i is ≥ 0 and such that $p_1 + p_2 + p_3 = 1$.)

For $x \in K$, let $f(x)$ be the intersection of K with the ray from 0 through Tx. (Note $Tx \neq 0$ for any $x \in K$, so this ray is well-defined.) Then $f : K \rightarrow K$ is continuous, so by Brouwer’s fixed point theorem, there is an $x \in K$ such that $f(x) = x$. But by definition, $f(x)$ is a scalar multiple of Ax.

11. Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a bounded continuous map. (Bounded means there is an $M < \infty$ such that $|F(x)| \leq M$ for all x.) Prove there is an x such that $F(x) = x$.

Solution: Let B be the closed ball of radius M centered at the origin. Note that F maps B to itself. Thus by Brouwer’s fixed point theorem, F has a fixed point. □