Let $A : V \to V$ be an operator on the finite dimensional vector space V. What is the behavior of $A^n x$ as $n \to \infty$?

Theorem 1. Let

\[Z = \{ x \in V : A^n x \to 0 \text{ as } n \to \infty \} \]
\[Y = \{ x \in V : |A^n x| \text{ is bounded } n \to \infty \}. \]

Then Z and Y are subspaces of V and $Z \subset Y \subset V$.

Proof. Exercise.

Theorem 2. Let x be a generalized eigenvector of A for the eigenvalue $\lambda \neq 0$. Let k be the smallest number such that

\[(A - \lambda I)^k x = 0. \]

Then

\[\frac{A^n x}{\lambda^n n^{k-1}} \to u \]

as $n \to \infty$, where u is an eigenvector with eigenvalue λ.

Proof. Let $N = (A - \lambda I)$. Then $A = \lambda I + N$. Since λI and N commute, we can expand $A^n = (\lambda I + N)^n$ by the usual binomial formula:

\[A^n = (\lambda I + N)^n = \sum_{j=0}^{n} \binom{n}{j} (\lambda I)^{n-j} N^j \]

so

\[A^n x = \sum_{j=0}^{n} \binom{n}{j} (\lambda I)^{n-j} N^j x. \]

(*)
Since \(N^k \mathbf{x} = 0 \), all the terms of (*) with \(j \geq k \) vanish, so (for \(n \geq k \))

\[
A^n \mathbf{x} = \sum_{j=0}^{k-1} \binom{n}{j} \lambda^{n-j} N^j \mathbf{x}.
\]

Dividing by \(\lambda^n \) gives

\[
\frac{A^n \mathbf{x}}{\lambda^n} = \sum_{j=0}^{k-1} \binom{n}{j} \frac{N^j \mathbf{x}}{\lambda^j}.
\]

Note that

\[
\frac{1}{n^j} \binom{n}{j} = \frac{1}{n^j} \frac{(n-j+1) \cdots (n-1)n}{j!} = \frac{1}{j!} \left(1 - \frac{j+1}{n} \right) \cdots \left(1 - \frac{1}{n} \right) 1
\]

In this last expression, \(1/(j!) \) is multiplied by \(j \) terms, each of which tends to 1 as \(n \to \infty \). Thus their product tends to 1 as \(n \to \infty \). That is,

\[
\lim_{n \to \infty} \frac{1}{n^j} \binom{n}{j} = \frac{1}{j!}.
\]

It follow that

\[
\lim_{n \to \infty} \frac{1}{n^p} \binom{n}{j} = 0 \quad \text{if } j < p.
\]

Thus if we divide both sides of (†) by \(n^{k-1} \) and let \(n \to \infty \), all but the last term (the \(j = k - 1 \) term) on the right will vanish:

\[
\lim_{n \to \infty} \frac{A^n \mathbf{x}}{\lambda^n n^{k-1}} = \frac{N^{k-1} \mathbf{x}}{j! \lambda^j}.
\]

Let \(\mathbf{u} \) be the vector on the right side of this equation. By choice of \(k \), \(\mathbf{u} \neq 0 \), but \(N \mathbf{u} = (A - \lambda I) \mathbf{u} = 0 \). That is, \(\mathbf{u} \) is a nonzero eigenvector of \(A \). \(\square \)

Corollary. Suppose \(A \) and \(\mathbf{x} \) are as in theorem 2. Then \(A^n \mathbf{x} \to 0 \) if and only if \(|\lambda| < 1\). Also, \(A^n \mathbf{x} \) stays bounded if and only if

\(|\lambda| < 1\), or \(|\lambda| = 1\) and \(k = 1\).

Theorem 3. Suppose \(A : V \to V \) is a linear operator on a finite-dimensional complex vector space. Let \(Z \) and \(Y \) be the subspaces defined in theorem 1. Then

1. \(Z \) is the subspace spanned by all generalized eigenvectors for eigenvalues \(\lambda_i \) with \(|\lambda_i| < 1\).
2. \(Y \) is the subspace spanned by all generalized eigenvectors for eigenvalues \(\lambda_i \) with \(|\lambda_i| < 1\) together with all eigenvectors with eigenvalues \(\lambda_i \) with \(|\lambda_i| = 1\).
Proof. We will only prove (1) as (2) is very similar. Let W be the space spanned by all generalized eigenvectors for eigenvalues λ_i with $|\lambda_i| < 1$. By the corollary to theorem 2, Z contains W.

Note that A maps Z into itself. Thus there is a basis of Z consisting of generalized eigenvectors of A. By the corollary to theorem 2, each of those eigenvectors must correspond to an eigenvalue λ_i with $|\lambda_i| < 1$. Thus $Z \subset W$.

Since $W \subset Z$ and $Z \subset W$, in fact $Z = W$. □

Corollary. $A^n x \to 0$ for every $x \in V$ if and only if the eigenvalues of A are all < 1 in absolute value.

Proof. We know that the generalized eigenvectors of A span all of V. Thus if the eigenvalues are all < 1 in absolute value, then by theorem 3 the space Z is all of V. That is, $A^n x \to 0$ for all x.

Conversely, if $|\lambda| \geq 1$ for some eigenvalue λ, then $A^n v \not\to 0$, where v is an eigenvector with eigenvalue λ. □

Real Vector Spaces

Theorem 3 was stated and proved for complex vector spaces. But it has implications for real vector spaces.

Theorem 4. Let $A : V \to V$ be a linear operator on a finite-dimensional vector space V (real or complex). Then $A^n x \to 0$ for all x if and only if the eigenvalues (i.e., the roots of $\det(A - \lambda I)$) of A are all < 1 in absolute value: $|\lambda_i| < 1$.

Proof. The corollary to theorem 3 already established this for complex spaces, so assume V is a real vector space. Let M be the matrix for A (with respect to some basis.) Note that $A^n x \to 0$ for all $x \in V$ if and only if $M^n x \to 0$ for all $x \in \mathbb{R}^d$. (Here d is the dimension of V.)

Let $z \in \mathbb{C}^d$ be a complex vector. Then z can be written

$$z = x + iy$$

for suitable real vectors x and y in \mathbb{R}^d. Of course

$$M^n z = (M^n x) + i(M^n y).$$

From this we see that $M^n x \to 0$ for all real $x \in \mathbb{R}^d$ if and only if $M^n z \to 0$ for all complex $z \in \mathbb{C}^d$. But by the corollary to theorem 3, the latter happens if and only if the eigenvalues
of M are all < 1 in absolute value. Of course A and M have the same eigenvalues, so we’re done. □

In the same way it is easy to prove that $A^n x$ stays bounded for all $x \in V$ if and only if:

1. the eigenvalues of A are all ≤ 1 in absolute value, and
2. for those eigenvalues λ_i with $|\lambda_i| = 1$, every generalized eigenvector of $M : \mathbb{C}^d \to \mathbb{C}^d$ is an ordinary eigenvector.