Math 217a Homework 1

1. Let \(M \) be the space of lines \(L \) in \(\mathbb{R}^2 \). Consider the following two coordinate charts:

(a) \((u, v)\), where \(L \) is the line joining \((u(L), 0)\) and \((0, v(L))\). (b) \((r, w)\), where \(r(L) \) and \(w(L) \) are the polar coordinates for the point in \(L \) closest to the origin.

Express the vectorfields \(\frac{\partial}{\partial u} \) and \(\frac{\partial}{\partial w} \) in terms of the \((u, v)\) coordinate system.

2. Let \(V, W, \) and \(Z \) be the vectorfields on \(\mathbb{R}^2 \) such that \(\phi_tV \) is counterclockwise rotation by \(t \) about the origin and

\[
\phi_tV(x, y) = (x + t, y) \quad \phi_tZ(x, y) = (tx, ty)
\]

(a) Express all three vectorfields in terms of the basis \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \). (b) Find all three Lie brackets: \([V, W]\), \([V, Z]\), and \([W, Z]\).

3. Note that any linear mapping \(A : \mathbb{R}^n \to \mathbb{R}^n \) determines a tangent vectorfield \(\tilde{A} \) on \(\mathbb{R}^n \):

\[
\tilde{A}(p) = (p, Ap)
\]

Prove that if \(A, B : \mathbb{R}^n \to \mathbb{R}^n \) are linear maps, then

\[
[\tilde{A}, \tilde{B}] = \tilde{C}
\]

where \(C = AB - BA \).

4. Suppose \(Y_1, \ldots, Y_k \) are tangent vectorfields such that \([Y_i, Y_j] \equiv 0\) for all \(i \) and \(j \). Suppose \(p \) is a point such that \(Y_1(p), \ldots, Y_k(p) \) are linearly independent. Prove that there is a coordinate chart \((x^1, \ldots, x^n)\) defined on a neighborhood of \(p \) such that

\[
Y_i \equiv \frac{\partial}{\partial x^i} \quad (1 \leq i \leq k)
\]