Problem 1

Consider the matrix
\[A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 2 & 3 \end{bmatrix}. \]

(a) Show that A has eigenvalues 0, 1, 4; and for each eigenvalue find a basis for the corresponding eigenspace. Show all reasoning.

(b) Does there exist a basis for \(\mathbb{R}^3 \) consisting of eigenvectors of A? If so, give one; if not, explain why not.

Problem 2

Suppose \(A \) is a symmetric 3 \(\times \) 3 matrix with eigenbasis \(\beta = \{v_1, v_2, v_3\} \) and associated eigenvalues \(\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 1. \)

(a) If \(x = c_1 v_1 + c_2 v_2 + c_3 v_3 \), use the information provided above to find an expression for \(A^5 x \).

(b) For this and part (c), suppose that two of the vectors of \(\beta \) are \(v_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix} \). Find, with reasoning, a valid possibility for the third vector \(v_3 \) which has unit length; simplify your answer as much as possible. (Hint: recall \(A \) is symmetric.)

(c) Find \(A^5 e_1 \), showing all reasoning; you may leave your answer expressed as an explicit linear combination of the vectors \(v_1, v_2, v_3 \) from part (b). (Hint: it may help to notice that \(v_1 \) and \(v_2 \) also have unit length.)

Problem 3

You are given the matrix \(A = \begin{bmatrix} a & b \\ b & 1/2 \end{bmatrix} \) for real numbers \(a, b \). We know that the determinant of \(A \) is 0 and that that \(\lambda_1 = 1 \) is an eigenvalue of \(A \).

(a) Explain why \(A \) cannot be the matrix of a rotation in \(\mathbb{R}^2 \).

(b) Determine the characteristic polynomial of \(A \) simplifying your answer as much as possible.

(c) Find, with reasoning, a pair of values \((a, b)\) for which all of the above conditions are true, and for this choice of \((a, b)\) give a simple verbal description of the linear transformation \(T(x) = Ax \).

Problem 4

Suppose \(\text{Proj}_L : \mathbb{R}^2 \to \mathbb{R}^2 \) is the linear transformation that projects vectors onto the line \(L \) spanned by \(\begin{bmatrix} 5 \\ 7 \end{bmatrix} \). Let \(A \) be the matrix of \(\text{Proj}_L \) with respect to the standard basis.

(a) Find, with justification, the two eigenvalues of \(A \).

(b) Find, with justification, a basis for each eigenspace of \(A \).

(c) Show that \(A^2 = A \).

Problem 5

For this problem, suppose \(A \) is an \(n \times n \) matrix.

(a) Complete the following sentence: A nonzero vector \(v \in \mathbb{R}^n \) is defined to be an eigenvector of \(A \) if

(b) Now suppose \(B \) is an invertible \(n \times n \) matrix, and let \(u \) be an eigenvector of \(B \) with eigenvalue \(b \). Show that \(u \) is an eigenvector of \(B^{-1} \), and find the corresponding eigenvalue.

(c) With \(A \) and \(B \) as above, suppose \(w \) is an eigenvector of the product \(AB \) with eigenvalue \(\lambda \). Show that \(Bw \) is an eigenvector of \(BA \), and find the corresponding eigenvalue.